Normalization flow in the presence of a resonance
- Авторы: Трещев Д.В.1
 - 
							Учреждения: 
							
- Steklov Mathematical Institute of Russian Academy of Sciences, Moscow, Russia
 
 - Выпуск: Том 89, № 1 (2025)
 - Страницы: 184-207
 - Раздел: Статьи
 - URL: https://bakhtiniada.ru/1607-0046/article/view/303941
 - DOI: https://doi.org/10.4213/im9595
 - ID: 303941
 
Цитировать
Аннотация
Following [18], we develop an approach to the Hamiltonian theory of normal forms based on continuous averaging. We concentrate on the case of normal forms near an elliptic singular point, but unlike [18] we do not assume that frequences of the linearized system are non-resonant. We study analytic properties of the normalization procedure. In particular, we show that in the case of a codimension one resonance an analytic Hamiltonian function may be reduced to a normal form up to an exponentially small reminder with explicit estimates of the reminder and the analyticity domain.Bibliography: 20 titles.
Об авторах
Дмитрий Валерьевич Трещев
Steklov Mathematical Institute of Russian Academy of Sciences, Moscow, Russia
							Автор, ответственный за переписку.
							Email: treschev@mi-ras.ru
				                					                																			                								
доктор физико-математических наук, профессор
Список литературы
- Дж. Д. Биркгоф, Динамические системы, Изд. дом “Удмуртский университет”, Ижевск, 1999, 408 с.
 - А. Д. Брюно, “Аналитическая форма дифференциальных уравнений”, Гл. 1–3, Тр. ММО, 25, Изд-во Моск. ун-та, М., 1971, 119–262
 - Ж. Дьедонне, Основы современного анализа, Мир, М., 1964, 430 с.
 - L. H. Eliasson, “Normal forms for Hamiltonian systems with Poisson commuting integrals – elliptic case”, Comment. Math. Helv., 65:1 (1990), 4–35
 - B. Fayad, “Lyapunov unstable elliptic equilibria”, J. Amer. Math. Soc., 36:1 (2023), 81–106
 - Xianghong Gong, “Existence of divergent Birkhoff normal forms of Hamiltonian functions”, Illinois J. Math., 56:1 (2012), 85–94
 - H. Ito, “Convergence of Birkhoff normal forms for integrable systems”, Comment. Math. Helv., 64:3 (1989), 412–461
 - T. Kappeler, Y. Kodama, A. Nemethi, “On the Birkhoff normal form of a completely integrable Hamiltonian system near a fixed point with resonance”, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 26:4 (1998), 623–661
 - V. V. Kozlov, “Formal stability, stability for most initial conditions and diffusion in analytic systems of differential equations”, Regul. Chaotic Dyn., 28:3 (2023), 251–264
 - R. Krikorian, “On the divergence of Birkhoff normal forms”, Publ. Math. Inst. Hautes Etudes Sci., 135 (2022), 1–181
 - J. Moser, “On the volume elements on a manifold”, Trans. Amer. Math. Soc., 120 (1965), 286–294
 - R. Perez-Marco, “Convergence or generic divergence of the Birkhoff normal form”, Ann. of Math. (2), 157:2 (2003), 557–574
 - H. Rüssmann, “Über die Normalform analytischer Hamiltonscher Differentialgleichungen in der Nähe einer Gleichgewichtslösung”, Math. Ann., 169 (1967), 55–72
 - C. L. Siegel, “Über die Existenz einer Normalform analytischer Hamiltonscher Differentialgleichungen in der Nähe einer Gleichgewichtslösung”, Math. Ann., 128 (1954), 144–170
 - Л. Зигель, Ю. Мозер, Лекции по небесной механике, НИЦ “Регулярная и хаотическая динамика”, М.–Ижевск, 2001, 384 с.
 - L. Stolovitch, “Singular complete integrability”, Inst. Hautes Etudes Sci. Publ. Math., 91 (2000), 133–210
 - D. Treschev, O. Zubelevich, Introduction to the perturbation theory of Hamiltonian systems, Springer Monogr. Math., Springer-Verlag, Berlin, 2010, x+211 pp.
 - D. Treschev, Normalization flow
 - J. Vey, “Sur certains systemes dynamiques separables”, Amer. J. Math., 100:3 (1978), 591–614
 - Wanke Yin, “Divergent Birkhoff normal forms of real analytic area preserving maps”, Math. Z., 280:3-4 (2015), 1005–1014
 
Дополнительные файлы
				
			
						
					
						
						
						
									
