Normalization flow in the presence of a resonance

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Following [18], we develop an approach to the Hamiltonian theory of normal forms based on continuous averaging. We concentrate on the case of normal forms near an elliptic singular point, but unlike [18] we do not assume that frequences of the linearized system are non-resonant. We study analytic properties of the normalization procedure. In particular, we show that in the case of a codimension one resonance an analytic Hamiltonian function may be reduced to a normal form up to an exponentially small reminder with explicit estimates of the reminder and the analyticity domain.

About the authors

Dmitry Valerevich Treschev

Steklov Mathematical Institute of Russian Academy of Sciences, Moscow, Russia

Author for correspondence.
Email: treschev@mi-ras.ru

Doctor of physico-mathematical sciences, Professor

References

  1. Дж. Д. Биркгоф, Динамические системы, Изд. дом “Удмуртский университет”, Ижевск, 1999, 408 с.
  2. А. Д. Брюно, “Аналитическая форма дифференциальных уравнений”, Гл. 1–3, Тр. ММО, 25, Изд-во Моск. ун-та, М., 1971, 119–262
  3. Ж. Дьедонне, Основы современного анализа, Мир, М., 1964, 430 с.
  4. L. H. Eliasson, “Normal forms for Hamiltonian systems with Poisson commuting integrals – elliptic case”, Comment. Math. Helv., 65:1 (1990), 4–35
  5. B. Fayad, “Lyapunov unstable elliptic equilibria”, J. Amer. Math. Soc., 36:1 (2023), 81–106
  6. Xianghong Gong, “Existence of divergent Birkhoff normal forms of Hamiltonian functions”, Illinois J. Math., 56:1 (2012), 85–94
  7. H. Ito, “Convergence of Birkhoff normal forms for integrable systems”, Comment. Math. Helv., 64:3 (1989), 412–461
  8. T. Kappeler, Y. Kodama, A. Nemethi, “On the Birkhoff normal form of a completely integrable Hamiltonian system near a fixed point with resonance”, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 26:4 (1998), 623–661
  9. V. V. Kozlov, “Formal stability, stability for most initial conditions and diffusion in analytic systems of differential equations”, Regul. Chaotic Dyn., 28:3 (2023), 251–264
  10. R. Krikorian, “On the divergence of Birkhoff normal forms”, Publ. Math. Inst. Hautes Etudes Sci., 135 (2022), 1–181
  11. J. Moser, “On the volume elements on a manifold”, Trans. Amer. Math. Soc., 120 (1965), 286–294
  12. R. Perez-Marco, “Convergence or generic divergence of the Birkhoff normal form”, Ann. of Math. (2), 157:2 (2003), 557–574
  13. H. Rüssmann, “Über die Normalform analytischer Hamiltonscher Differentialgleichungen in der Nähe einer Gleichgewichtslösung”, Math. Ann., 169 (1967), 55–72
  14. C. L. Siegel, “Über die Existenz einer Normalform analytischer Hamiltonscher Differentialgleichungen in der Nähe einer Gleichgewichtslösung”, Math. Ann., 128 (1954), 144–170
  15. Л. Зигель, Ю. Мозер, Лекции по небесной механике, НИЦ “Регулярная и хаотическая динамика”, М.–Ижевск, 2001, 384 с.
  16. L. Stolovitch, “Singular complete integrability”, Inst. Hautes Etudes Sci. Publ. Math., 91 (2000), 133–210
  17. D. Treschev, O. Zubelevich, Introduction to the perturbation theory of Hamiltonian systems, Springer Monogr. Math., Springer-Verlag, Berlin, 2010, x+211 pp.
  18. D. Treschev, Normalization flow
  19. J. Vey, “Sur certains systemes dynamiques separables”, Amer. J. Math., 100:3 (1978), 591–614
  20. Wanke Yin, “Divergent Birkhoff normal forms of real analytic area preserving maps”, Math. Z., 280:3-4 (2015), 1005–1014

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Treschev D.V.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».