On subspaces of Orlicz spaces, generated by independent copies of a mean zero function

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

We study subspaces of Orlicz spaces $L_M$ generated by independent copies $f_k$, $k=1,2,…$, of functions $f\in L_M$, $\int_0^1 f(t) dt=0$. In terms of dilations of the function $f$, a description of strongly embedded subspaces of this type is obtained, and conditions, guaranteeing that the unit ball of such subspace consists of functions with equicontinuous norms in $L_M$, are found. Any such a subspace $H$ is isomorphic to some Orlicz sequence space $\ell_\psi$. We prove that there is a wide class of Orlicz spaces $L_M$ (containing $L^p$-spaces, $1\le p< 2$), for which each of these properties of $H$ holds if and only if the Matuszewska-Orlicz indices of the functions $M$ and $\psi$ satisfy the inequality: $\alpha_\psi^0>\beta_M^\infty$.

About the authors

Sergei Vladimirovich Astashkin

Samara National Research University; Lomonosov Moscow State University; Moscow Center for Fundamental and Applied Mathematics; Bahçesehir University

Email: astash@ssau.ru
ORCID iD: 0000-0002-8239-5661
Doctor of physico-mathematical sciences, Professor

References

  1. А. Зигмунд, Тригонометрические ряды, т. 1, Мир, М., 1965, 615 с.
  2. F. Albiac, N. J. Kalton, Topics in Banach space theory, Grad. Texts in Math., 233, Springer, New York, 2006, xii+373 pp.
  3. W. Rudin, “Trigonometric series with gaps”, J. Math. Mech., 9 (1960), 203–227
  4. J. Bourgain, “Bounded orthogonal systems and the $Lambda(p)$-set problem”, Acta Math., 162:3-4 (1989), 227–245
  5. G. F. Bachelis, S. E. Ebenstein, “On $Lambda(p)$ sets”, Pacific J. Math., 54:1 (1974), 35–38
  6. J. Bourgain, “$Lambda_p$-sets in analysis: results, problems and related aspects”, Handbook of the geometry of Banach spaces, v. 1, North-Holland Publishing Co., Amsterdam, 2001, 195–232
  7. H. P. Rosenthal, “On subspaces of $L^p$”, Ann. of Math. (2), 97:2 (1973), 344–373
  8. S. V. Astashkin, “The structure of subspaces in Orlicz spaces lying between $L^1$ and $L^2$”, Math. Z., 303:4 (2023), 91, 24 pp.
  9. М. И. Кадец, “О линейной размерности пространств $L_p$ и $l_q$”, УМН, 13:6(84) (1958), 95–98
  10. J. Bretagnolle, D. Dacunha-Castelle, “Mesures aleatoires et espaces d'Orlicz”, C. R. Acad. Sci. Paris Ser. A-B, 264 (1967), A877–A880
  11. J. Bretagnolle, D. Dacunha-Castelle, “Application de l'etude de certaines formes lineaires aleatoires au plongement d'espaces de Banach dans des espaces $L^p$”, Ann. Sci. Ecole Norm. Sup. (4), 2:4 (1969), 437–480
  12. D. Dacunha-Castelle, “Variables aleatoires echangeables et espaces d'Orlicz”, Seminaire Maurey–Schwartz 1974–1975. Espaces $L^p$, applications radonifiantes et geometrie des espaces de Banach, Ecole Polytech., Centre Math., Paris, 1975, Exp. X, XI, 21 pp.
  13. M. Sh. Braverman, “On some moment conditions for sums of independent random variables”, Probab. Math. Statist., 14:1 (1993), 45–56
  14. M. Braverman, “Independent random variables in Lorentz spaces”, Bull. London Math. Soc., 28:1 (1996), 79–87
  15. S. V. Astashkin, F. A. Sukochev, “Orlicz sequence spaces spanned by identically distributed independent random variables in $L_p$-spaces”, J. Math. Anal. Appl., 413:1 (2014), 1–19
  16. S. Astashkin, F. Sukochev, D. Zanin, “On uniqueness of distribution of a random variable whose independent copies span a subspace in $L^p$”, Studia Math., 230:1 (2015), 41–57
  17. S. Astashkin, F. Sukochev, D. Zanin, “The distribution of a random variable whose independent copies span $ell_M$ is unique”, Rev. Mat. Complut., 35:3 (2022), 815–834
  18. S. Astashkin, “On symmetric spaces containing isomorphic copies of Orlicz sequence spaces”, Comment. Math., 56:1 (2016), 29–44
  19. С. В. Асташкин, “О подпространствах пространства Орлича, порожденных независимыми одинаково распределенными функциями”, Докл. РАН. Матем., информ., проц. упр., 512 (2023), 65–68
  20. С. Г. Крейн, Ю. И. Петунин, Е. М. Семенов, Интерполяция линейных операторов, Наука, М., 1978, 400 с.
  21. J. Lindenstrauss, L. Tzafriri, Classical Banach spaces, v. II, Ergeb. Math. Grenzgeb., 97, Function spaces, Springer-Verlag, Berlin–New York, 1979, x+243 pp.
  22. C. Bennett, R. Sharpley, Interpolation of operators, Pure Appl. Math., 129, Academic Press, Inc., Boston, MA, 1988, xiv+469 pp.
  23. М. А. Красносельский, Я. Б. Рутицкий, Выпуклые функции и пространства Орлича, Физматгиз, М., 1958, 271 с.
  24. M. M. Rao, Z. D. Ren, Theory of Orlicz spaces, Monogr. Textbooks Pure Appl. Math., 146, Marcel Dekker, Inc., New York, 1991, xii+449 pp.
  25. L. Maligranda, Orlicz spaces and interpolation, Sem. Mat., 5, Univ. Estad. Campinas, Dep. de Matematica, Campinas, SP, 1989, iii+206 pp.
  26. J. Lindenstrauss, L. Tzafriri, “On Orlicz sequence spaces. III”, Israel J. Math., 14 (1973), 368–389
  27. A. Kaminska, Y. Raynaud, “Isomorphic copies in the lattice $E$ and its symmetrization $E^{*}$ with applications to Orlicz–Lorentz spaces”, J. Funct. Anal., 257:1 (2009), 271–331
  28. J. Lindenstrauss, L. Tzafriri, Classical Banach spaces, v. I, Ergeb. Math. Grenzgeb., 92, Sequence spaces, Springer-Verlag, Berlin–New York, 1977, xiii+188 pp.
  29. S. V. Astashkin, “$Lambda(p)$-spaces”, J. Funct. Anal., 266:8 (2014), 5174–5198
  30. S. Montgomery-Smith, E. Semenov, “Random rearrangements and operators”, Voronezh winter mathematical schools, Amer. Math. Soc. Transl. Ser. 2, 184, Adv. Math. Sci., 37, Amer. Math. Soc., Providence, RI, 1998, 157–183
  31. Л. В. Канторович, Г. П. Акилов, Функциональный анализ, 2-е изд., Наука, М., 1977, 742 с.
  32. J. Alexopoulos, “De La Vallee Poussin's theorem and weakly compact sets in Orlicz spaces”, Quaest. Math., 17:2 (1994), 231–248
  33. R. del Campo, A. Fernandez, F. Mayoral, F. Naranjo, “Compactness in quasi-Banach function spaces with applications to $L^1$ of the semivariation of a vector measure”, Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Mat. RACSAM, 114:3 (2020), 112, 17 pp.
  34. K. Lesnik, L. Maligranda, J. Tomaszewski, “Weakly compact sets and weakly compact pointwise multipliers in Banach function lattices”, Math. Nachr., 295:3 (2022), 574–592
  35. Б. С. Кашин, А. А. Саакян, Ортогональные ряды, 2-е изд., АФЦ, М., 1999, x+550 с.
  36. W. B. Johnson, G. Schechtman, “Sums of independent random variables in rearrangement invariant function spaces”, Ann. Probab., 17:2 (1989), 789–808
  37. С. В. Асташкин, “Независимые функции в симметричных пространствах и свойство Круглова”, Матем. сб., 199:7 (2008), 3–20
  38. S. Montgomery-Smith, “Rearrangement invariant norms of symmetric sequence norms of independent sequences of random variables”, Israel J. Math., 131 (2002), 51–60
  39. С. В. Асташкин, Е. М. Семенов, “О некоторых свойствах вложений перестановочно-инвариантных пространств”, Матем. сб., 210:10 (2019), 17–36

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Асташкин С.V.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».