Modification of Poincare'sconstruction and its application in $CR$-geometry of hypersurfaces in $\mathbf{C}^4$
- 作者: Beloshapka V.K.1,2
 - 
							隶属关系: 
							
- Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
 - Moscow Center for Fundamental and Applied Mathematics
 
 - 期: 卷 86, 编号 5 (2022)
 - 页面: 18-42
 - 栏目: Articles
 - URL: https://bakhtiniada.ru/1607-0046/article/view/133879
 - DOI: https://doi.org/10.4213/im9249
 - ID: 133879
 
如何引用文章
详细
作者简介
Valerii Beloshapka
Lomonosov Moscow State University, Faculty of Mechanics and Mathematics; Moscow Center for Fundamental and Applied Mathematics
														Email: vkb@strogino.ru
				                					                																			                								Doctor of physico-mathematical sciences, Professor				                														
参考
- H. Poincare, “Les fonctions analytiques de deux variables et la representation conforme”, Rend. Circ. Mat. Palermo, 23 (1907), 185–220
 - S. S. Chern, J. K. Moser, “Real hypersurfaces in complex manifolds”, Acta Math., 133 (1974), 219–271
 - В. К. Белошапка, “Симметрии вещественных гиперповерхностей трехмерного комплексного пространства”, Матем. заметки, 78:2 (2005), 171–179
 - V. K. Beloshapka, “Automorphisms of degenerate hypersurfaces in $mathbf{C}^2$ and a dimension conjecture”, Russ. J. Math. Phys., 4:3 (1996), 393–396
 - M. S. Baouendi, P. Ebenfelt, L. P. Rothschild, “CR automorphisms of real analytic manifolds in complex space”, Comm. Anal. Geom., 6:2 (1998), 291–315
 - G. Fels, W. Kaup, “Classification of Levi degenerate homogeneous CR-manifolds in dimension 5”, Acta Math., 201:1 (2008), 1–82
 - A. Santi, “Homogeneous models for Levi degenerate CR manifolds”, Kyoto J. Math., 60:1 (2020), 291–334
 - D. Sykes, I. Zelenko, Maximal dimension of groups of symmetries of homogeneous 2-nondegenerate CR-structures of hypersurface type with a 1-dimensional Levi kernel
 - Г. Е. Изотов, “О совместном приведении квадратичной и эрмитовой форм”, Изв. вузов. Матем., 1957, № 1, 143–159
 - А. Е. Ершова, “Автоморфизмы 2-невырожденных гиперповерхностей в $mathbb{C}^3$”, Матем. заметки, 69:2 (2001), 214–222
 - M. Kolar, F. Meylan, D. Zaitsev, “Chern–Moser operators and polynomial models in CR geometry”, Adv. Math., 263 (2014), 321–356
 - W. Kaup, “Einige Bemerkungen über polynomiale Vektorfelder, Jordanalgebren und die Automorphismen von Siegelschen Gebieten”, Math. Ann., 204 (1973), 131–144
 - А. С. Лабовский, “О размерности группы биголоморфных автоморфизмов вещественно-аналитических гиперповерхностей”, Матем. заметки, 61:3 (1997), 349–358
 - B. Kruglikov, “Submaximally symmetric CR-structures”, J. Geom. Anal., 26:4 (2016), 3090–3097
 - B. Kruglikov, “Blow-ups and infinitesimal automorphisms of CR-manifolds”, Math. Z., 296:3-4 (2020), 1701–1724
 - I. Kossovskiy, R. Shafikov, “Analytic differential equations and spherical real hypersurfaces”, J. Differential Geom., 102:1 (2016), 67–126
 - A. Isaev, B. Kruglikov, “On the symmetry algebras of 5-dimensional CR-manifolds”, Adv. Math., 322 (2017), 530–564
 - V. K. Beloshapka, “$CR$-manifolds of finite Bloom–Graham type: the model surface method”, Russ. J. Math. Phys., 27:2 (2020), 155–174
 
补充文件
				
			
						
						
					
						
						
				
