Второй момент центральных значений симметричных квадратичных $L$ -функций форм Маасса
- Авторы: Фроленков Д.А.1
-
Учреждения:
- Математический институт им. В. А. Стеклова Российской академии наук, г. Москва
- Выпуск: Том 89, № 6 (2025)
- Страницы: 183-205
- Раздел: Статьи
- URL: https://bakhtiniada.ru/1607-0046/article/view/358694
- DOI: https://doi.org/10.4213/im9640
- ID: 358694
Цитировать
Аннотация
Библиография: 22 наименования.
Ключевые слова
Об авторах
Дмитрий Андреевич Фроленков
Математический институт им. В. А. Стеклова Российской академии наук, г. Москва
Email: frolenkov@mi-ras.ru
ORCID iD: 0000-0001-6094-7923
SPIN-код: 7791-1256
Scopus Author ID: 55180392900
ResearcherId: L-5552-2015
доктор физико-математических наук, без звания
Список литературы
- R. Khan, M. P. Young, “Moments and hybrid subconvexity for symmetric-square $L$-functions”, J. Inst. Math. Jussieu, 22:5 (2023), 2029–2073
- Hengcai Tang, Zhao Xu, “Central value of the symmetric square $L$-functions related to Hecke–Maass forms”, Lith. Math. J., 56:2 (2016), 251–267
- J. W. C. Lam, “The second moment of the central values of the symmetric square $L$-functions”, Ramanujan J., 38:1 (2015), 129–145
- G. Harcos, P. Michel, “The subconvexity problem for Rankin–Selberg $L$-functions and equidistribution of Heegner points. II”, Invent. Math., 163:3 (2006), 581–655
- R. Khan, “Non-vanishing of the symmetric square $L$-function at the central point”, Proc. Lond. Math. Soc. (3), 100:3 (2010), 736–762
- Ming-ho Ng, Moments of automorphic L-functions, Ph.D. thesis, Univ. Hong Kong, Pokfulam, 2016
- D. Zagier, “Modular forms whose Fourier coefficients involve zeta-functions of quadratic fields”, Modular functions of one variable VI (Univ. Bonn, Bonn, 1976), Lecture Notes in Math., 627, Springer-Verlag, Berlin–New York, 1977, 105–169
- K. Soundararajan, M. P. Young, “The prime geodesic theorem”, J. Reine Angew. Math., 2013:676 (2013), 105–120
- J. B. Conrey, H. Iwaniec, “The cubic moment of central values of automorphic $L$-functions”, Ann. of Math. (2), 151:3 (2000), 1175–1216
- M. P. Young, “Weyl-type hybrid subconvexity bounds for twisted $L$-functions and Heegner points on shrinking sets”, J. Eur. Math. Soc. (JEMS), 19:5 (2017), 1545–1576
- O. Balkanova, D. Frolenkov, “A Voronoi summation formula for non-holomorphic Maass forms of half-integral weight”, Monatsh. Math., 203:4 (2024), 733–764
- F. Strömberg, “Computation of Maass waveforms with nontrivial multiplier systems”, Math. Comp., 77:264 (2008), 2375–2416
- G. Shimura, “On modular forms of half integral weight”, Ann. of Math. (2), 97:3 (1973), 440–481
- Y. N. Petridis, N. Raulf, M. S. Risager, “Double Dirichlet series and quantum unique ergodicity of weight one-half Eisenstein series”, Algebra Number Theory, 8:7 (2014), 1539–1595
- D. R. Heath-Brown, “A mean value estimate for real character sums”, Acta Arith., 72:3 (1995), 235–275
- M. N. Huxley, “On stationary phase integrals”, Glasgow Math. J., 36:3 (1994), 355–362
- V. Blomer, R. Khan, M. Young, “Distribution of mass of holomorphic cusp forms”, Duke Math. J., 162:14 (2013), 2609–2644
- K. Aggarwal, R. Holowinsky, Yongxiao Lin, Zhi Qi, “A Bessel delta method and exponential sums for $operatorname{GL}(2)$”, Q. J. Math., 71:3 (2020), 1143–1168
- O. Balkanova, D. Frolenkov, “Non-vanishing of Maass form symmetric square $L$-functions”, J. Math. Anal. Appl., 500:2 (2021), 125148, 23 pp.
- NIST handbook of mathematical functions, eds. F. W. J. Olver, D. W. Lozier, R. F. Boisvert, C. W. Clark, U.S. Department of commerce, National institute of standards and technology, Washington, DC; Cambridge Univ. Press, Cambridge, 2010, xvi+951 pp.
- G. Harcos, Subconvex bounds for automorphic $L$-functions and applications, D.Sc. thesis, Hungarian Acad. Sci., Budapest, 2011, vii+94 pp.
Дополнительные файлы
