A further sufficient condition for the determinantal conjecture
- Авторы: Шитов Я.Н.1
 - 
							Учреждения: 
							
 - Выпуск: Том 89, № 4 (2025)
 - Страницы: 219-226
 - Раздел: Статьи
 - URL: https://bakhtiniada.ru/1607-0046/article/view/306781
 - DOI: https://doi.org/10.4213/im9292
 - ID: 306781
 
Цитировать
Аннотация
Let $A$, $B$ be $n\times n$ normal matrices with eigenvalues $(a_1,…,a_n)$, $(b_1,…,b_n)$, respectively. We show that $\det(A+B)$ lies in the convex hull ofif all eigenvalues of $A$, $B$ are real, except for three eigenvalues of $B$.
Ключевые слова
Об авторах
Ярослав Николаевич Шитов
							Автор, ответственный за переписку.
							Email: yaroslav-shitov@yandex.ru
				                					                																			                								доктор физико-математических наук, без звания				                								 						
Список литературы
- N. Bebiano, J. K. Merikoski, J. da Providência, “On a conjecture of G. N. de Oliveira on determinants”, Linear Multilinear Algebra, 20:2 (1987), 167–170
 - N. Bebiano, J. da Providência, “Some remarks on a conjecture of de Oliveira”, Linear Algebra Appl., 102 (1988), 241–246
 - N. Bebiano, J. F. Queiro, “The determinant of the sum of two normal matrices with prescribed eigenvalues”, Linear Algebra Appl., 71 (1985), 23–28
 - N. Bebiano, G. Soares, “Three observations on the determinantal range”, Linear Algebra Appl., 401 (2005), 211–220
 - N. Bebiano, Yiu Tung Poon, J. da Providência, “On $C$-$det$ spectral and $C$-$det$-convex matrices”, Linear Multilinear Algebra, 23:4 (1988), 343–351
 - N. Bebiano, A. Kovačec, J. da Providência, “The validity of the Marcus–de Oliveira conjecture for essentially Hermitian matrices”, Linear Algebra Appl., 197/198 (1994), 411–427
 - J. da Providência, N. Bebiano, “Matrices satisfying a conjecture of G. N. de Oliveira on determinants”, Linear Algebra Appl., 78 (1986), 187–198
 - S. W. Drury, “Essentially Hermitian matrices revisited”, Electron. J. Linear Algebra, 15 (2006), 285–296
 - S. W. Drury, “OMC for scalar multiples of unitaries”, Linear Algebra Appl., 422:1 (2007), 318–325
 - G. de Oliveira, “Normal matrices (research problem)”, Linear Multilinear Algebra, 12:2 (1982), 153–154
 - M. Fiedler, “Bounds for the determinant of the sum of Hermitian matrices”, Proc. Amer. Math. Soc., 30 (1971), 27–31
 - S. Fisk, “A very short proof of Cauchy's interlace theorem”, Amer. Math. Monthly, 112:2 (2005), 118
 - Huajun Huang, “A survey of the Marcus–de Oliveira бonjecture”, Advances in algebra, SRAC 2017 (Mobile, AL, 2017), Springer Proc. Math. Stat., 277, Springer, Cham, 2019, 169–181
 - A. Kovačec, “On a conjecture of Marcus and de Oliveira”, Linear Algebra Appl., 201 (1994), 91–97
 - A. Kovačec, “The Marcus–de Oliveira conjecture, bilinear forms, and cones”, Linear Algebra Appl., 289:1-3 (1999), 243–259
 - Chi-Kwong Li, Yiu-Tung Poon, Nung-Sing Sze, “Ranks and determinants of the sum of matrices from unitary orbits”, Linear Multilinear Algebra, 56:1-2 (2008), 105–130
 - M. Marcus, “Derivations, Plücker relations, and the numerical range”, Indiana Univ. Math. J., 22:12 (1972/73), 1137–1149
 - J. K. Merikoski, A. Virtanen, “Some notes on de Oliveira's determinantal conjecture”, Linear Algebra Appl., 121 (1989), 345–352
 - J. K. Merikoski, A. Virtanen, “Some further notes on the Marcus–de Oliveira determinantal conjecture”, Linear Algebra Appl., 187 (1993), 259–262
 - Q. I. Rahman, G. Schmeisser, Analytic theory of polynomials, London Math. Soc. Monogr. (N.S.), 26, The Clarendon Press, Oxford Univ. Press, Oxford, 2002, xiv+742 pp.
 - K. Rodtes, “A class of normal dilation matrices affirming the Marcus–de Oliveira conjecture”, Oper. Matrices, 15:1 (2021), 127–130
 - N. Bebiano, J. P. da Providência, “Revisiting the Marcus–de Oliveira conjecture”, Mathematics, 13:5 (2025), 711, 9 pp.
 
Дополнительные файлы
				
			
						
					
						
						
						
									
