On Grothendieck–Serre conjecture in mixed characteristic for $\operatorname{SL}_{1,D}$
- Authors: Panin I.A.1
-
Affiliations:
- St. Petersburg Department of Steklov Mathematical Institute of Russian Academy of Sciences, Moscow, Russia
- Issue: Vol 89, No 2 (2025)
- Pages: 105-113
- Section: Articles
- URL: https://bakhtiniada.ru/1607-0046/article/view/303948
- DOI: https://doi.org/10.4213/im9661
- ID: 303948
Cite item
Abstract
Let $R$ be an unramified regular local ring of mixed characteristic, $D$ an Azumaya $R$-algebra, $K$ the fraction field of $R$, $\operatorname{Nrd}\colon D^{\times} \to R^{\times}$ the reduced norm homomorphism. Let $a \in R^{\times}$ be a unit. Suppose the equation $\operatorname{Nrd}=a$ has a solution over $K$, then it has a solution over $R$.Particularly, we prove the following. Let $R$ be as above and $a$, $b$, $c$ be units in $R$. Consider the equation $T^2_1-aT^2_2-bT^2_3+abT^2_4=c$. If it has a solution over $K$, then it has a solution over $R$.Similar results are proved for regular local rings, which are geometrically regular over a discrete valuation ring. These results extend result provedin [23] to the mixed characteristic case.
About the authors
Ivan Alexandrovich Panin
St. Petersburg Department of Steklov Mathematical Institute of Russian Academy of Sciences, Moscow, Russia
Author for correspondence.
Email: paniniv@gmail.com
Doctor of physico-mathematical sciences
References
- K. Česnavičius, “Grothendieck–Serre in the quasi-split unramified case”, Forum Math. Pi, 10 (2022), e9, 30 pp.
- J.-L. Colliot-Thelène, J.-J. Sansuc, “Principal homogeneous spaces under flasque tori: applications”, J. Algebra, 106:1 (1987), 148–205
- J.-L. Colliot-Thelène, M. Ojanguren, “Espaces principaux homogènes localement triviaux”, Inst. Hautes Etudes Sci. Publ. Math., 75 (1992), 97–122
- F. R. DeMeyer, “Projective modules over central separable algebras”, Canad. J. Math., 21 (1969), 39–43
- R. Fedorov, I. Panin, “A proof of the Grothendieck–Serre conjecture on principal bundles over regular local ring containing infinite fields”, Publ. Math. Inst. Hautes Etudes Sci., 122 (2015), 169–193
- R. Fedorov, “On the Grothendieck–Serre conjecture on principal bundles in mixed characteristic”, Trans. Amer. Math. Soc., 375:1 (2022), 559–586
- R. Fedorov, “On the Grothendieck–Serre conjecture about principal bundles and its generalizations”, Algebra Number Theory, 16:2 (2022), 447–465
- S. Gille, I. Panin, “On the Gersten conjecture for Hermitian Witt groups”, Math. Ann., 389:2 (2024), 1187–1224
- A. Grothendieck, “Torsion homologique et sections rationnelles”, Seminaire C. Chevalley, 2e annee, v. 3, Anneaux de Chow et applications, Secretariat mathematique, Paris, 1958, Exp. No. 5, 29 pp.
- A. Grothendieck, “Le groupe de Brauer. II. Theorie cohomologique”, Dix exposes sur la cohomologie de schemas, Adv. Stud. Pure Math., 3, North-Holland Publishing Co., Amsterdam, 1968, 67–87
- Ye. A. Nisnevich, “Espaces homogènes principaux rationnellement triviaux et arithmetique des schemas en groupe reductifs sur les anneaux de Dedekind”, C. R. Acad. Sci. Paris Ser. I Math., 299:1 (1984), 5–8
- Ye. Nisnevich, “Rationally trivial principal homogeneous spaces, purity and arithmetic of reductive group schemes over extensions of two-dimensional local regular rings”, C. R. Acad. Sci. Paris Ser. I Math., 309:10 (1989), 651–655
- Ning Guo, “The Grothendieck–Serre conjecture over semilocal Dedekind rings”, Transform. Groups, 27:3 (2022), 897–917
- M. Ojanguren, I. Panin, “Rationally trivial Hermitian spaces are locally trivial”, Math. Z., 237:1 (2001), 181–198
- I. Panin, A. Stavrova, N. Vavilov, “On Grothendieck–Serre's conjecture concerning principal $G$-bundles over reductive group schemes. I”, Compos. Math., 151:3 (2015), 535–567
- I. Panin, Proof of Grothendieck–Serre conjecture on principal bundles over regular local rings containing a finite field, 2015
- И. А. Панин, “Доказательство гипотезы Гротендика–Серра о главных расслоениях над регулярным локальным кольцом, содержащим поле”, Изв. РАН. Сер. матем., 84:4 (2020), 169–186
- I. Panin, “On Grothendieck–Serre conjecture concerning principal bundles”, Proceedings of the international congress of mathematicians (ICM 2018) (Rio de Janeiro, 2018), v. 2, World Sci. Publ., Hackensack, NJ, 2018, 201–221
- И. А. Панин, “О расширенной форме гипотезы Гротендика–Серра”, Изв. РАН. Сер. матем., 86:4 (2022), 175–191
- И. А. Панин, “Две теоремы чистоты и гипотеза Гротендика–Серра о главных $mathbf G$-расслоениях”, Матем. сб., 211:12 (2020), 123–142
- I. Panin, Moving lemmas in mixed characteristic and applications
- I. A. Panin, A. K. Stavrova, “On the Grothendieck–Serre conjecture concerning principal $G$-bundles over semilocal Dedekind domains”, Вопросы теории представлений алгебр и групп. 29, Зап. науч. сем. ПОМИ, 443, ПОМИ, СПб., 2016, 133–146
- И. А. Панин, А. А. Суслин, “Об одной гипотезе Гротендика, касающейся алгебр Адзумайа”, Алгебра и анализ, 9:4 (1997), 215–223
- D. Popescu, “General Neron desingularization and approximation”, Nagoya Math. J., 104 (1986), 85–115
- И. А. Панин, Д. Н. Тюрин, “Формы Пфистера и гипотеза Кольe-Телена для случая смешанной характеристики”, Изв. РАН. Сер. матем., 88:5 (2024), 174–186
- D. Quillen, “Higher algebraic K-theory. I”, Algebraic K-theory (Battelle Memorial Inst., Seattle, WA, 1972), v. I, Lecture Notes in Math., 341, Higher K-theories, Springer-Verlag, Berlin–New York, 1973, 85–147
- J. P. Serre, “Les espaces fibres algebriques”, Seminaire C. Chevalley, 2e annee, v. 3, Anneaux de Chow et applications, Secretariat mathematique, Paris, 1958, Exp. No. 1, 37 pp.
- R. G. Swan, “Neron–Popescu desingularization”, Algebra and geometry (Taipei, 1995), Lect. Algebra Geom., 2, Int. Press, Cambridge, MA, 1998, 135–192
- A. J. de Jong et al., The Stacks project
Supplementary files
