Linear isometric invariants of bounded domains
- Авторы: Ден Ф.1, Ning J.2, Wang Z.3, Чжоу Щ.4,5,1
-
Учреждения:
- School of Mathematical Sciences, University of the Chinese Academy of Sciences
- Central South University, Changsha
- Beijing Normal University
- Academy of Mathematics and Systems Science, Chinese Academy of Sciences
- Лаборатория Математики имени Хуа Ло-Кена, Китайская Академия Наук
- Выпуск: Том 88, № 4 (2024)
- Страницы: 31-43
- Раздел: Статьи
- URL: https://bakhtiniada.ru/1607-0046/article/view/261163
- DOI: https://doi.org/10.4213/im9542
- ID: 261163
Цитировать
Аннотация
Ключевые слова
Об авторах
Фу-Шен Ден
School of Mathematical Sciences, University of the Chinese Academy of Sciences
Jiafu Ning
Central South University, Changsha
Zhiwei Wang
Beijing Normal University
Щаньюй Чжоу
Academy of Mathematics and Systems Science, Chinese Academy of Sciences; Лаборатория Математики имени Хуа Ло-Кена, Китайская Академия Наук; School of Mathematical Sciences, University of the Chinese Academy of Sciences
Email: xyzhou@math.ac.cn
PhD
Список литературы
- S. Antonakoudis, Norms on pluricanonical forms: Preliminary version–a first draft, unpublished notes
- Bo-Yong Chen, “Every bounded pseudo-convex domain with Hölder boundary is hyperconvex”, Bull. Lond. Math. Soc., 53:4 (2021), 1009–1015
- Chen-Yu Chi, “Pseudonorms and theorems of Torelli type”, J. Differential Geom., 104:2 (2016), 239–273
- Chen-Yu Chi, Shing-Tung Yau, “A geometric approach to problems in birational geometry”, Proc. Natl. Acad. Sci. USA, 105:48 (2008), 18696–18701
- Fusheng Deng, Zhiwei Wang, Liyou Zhang, Xiangyu Zhou, “Linear invariants of complex manifolds and their plurisubharmonic variations”, J. Funct. Anal., 279:1 (2020), 108514, 27 pp.
- T. Inayama, Pseudonorms on direct images of pluricanonical bundles
- S. Kobayashi, Hyperbolic complex spaces, Grundlehren Math. Wiss., 318, Springer-Verlag, Berlin, 1998, xiv+471 pp.
- N. Lakic, “An isometry theorem for quadratic differentials on Riemann surfaces of finite genus”, Trans. Amer. Math. Soc., 349:7 (1997), 2951–2967
- V. Markovic, “Biholomorphic maps between Teichmüller spaces”, Duke Math. J., 120:2 (2003), 405–431
- Jiafu Ning, Huiping Zhang, Xiangyu Zhou, “On $p$-Bergman kernel for bounded domains in $mathbb C^n$”, Comm. Anal. Geom., 24:4 (2016), 887–900
- W. Rudin, “$L^{p}$-isometries and equimeasurability”, Indiana Univ. Math. J., 25:3 (1976), 215–228
- У. Рудин, Теория функций в единичном шаре из $mathbb C^n$, Мир, М., 1984, 456 с.
- Shing-Tung Yau, “On the pseudonorm project of birational classification of algebraic varieties”, Geometry and analysis on manifolds, Progr. Math., 308, Birkhäuser/Springer, Cham, 2015, 327–339
Дополнительные файлы
