Ground states for fractional Choquard equations with doubly critical exponents and magnetic fields
- Авторы: Guo Z.1, Zhao L.2
-
Учреждения:
- Liaoning Normal University
- Пекинский педагогический университет
- Выпуск: Том 88, № 1 (2024)
- Страницы: 47-57
- Раздел: Статьи
- URL: https://bakhtiniada.ru/1607-0046/article/view/251855
- DOI: https://doi.org/10.4213/im9361
- ID: 251855
Цитировать
Аннотация
In this paper, we investigate the ground states for the fractional Choquard equations with doubly critical exponents and magnetic fields. We prove that the equation has a ground state solution by using the Nehari method and the Pohožaev identity.Bibliography: 12 titles.
Об авторах
Zhenyu Guo
Liaoning Normal University
Email: guozy@163.com
доктор физико-математических наук, доцент
Lujuan Zhao
Пекинский педагогический университет
Автор, ответственный за переписку.
Email: zhao_lujuan@163.com
Список литературы
- P. d'Avenia, M. Squassina, “Ground states for fractional magnetic operators”, ESAIM Control Optim. Calc. Var., 24:1 (2018), 1–24
- T. Ichinose, H. Tamura, “Imaginary-time path integral for a relativistic spinless particle in an electromagnetic field”, Comm. Math. Phys., 105:2 (1986), 239–257
- Li Ma, Lin Zhao, “Classification of positive solitary solutions of the nonlinear Choquard equation”, Arch. Ration. Mech. Anal., 195:2 (2010), 455–467
- V. Moroz, J. Van Schaftingen, “Groundstates of nonlinear Choquard equations: existence, qualitative properties and decay asymptotics”, J. Funct. Anal., 265:2 (2013), 153–184
- P. d'Avenia, G. Siciliano, M. Squassina, “On fractional Choquard equations”, Math. Models Methods Appl. Sci., 25:8 (2015), 1447–1476
- Jinmyoung Seok, “Nonlinear Choquard equations: doubly critical case”, Appl. Math. Lett., 76 (2018), 148–156
- Yu Su, Li Wang, Haibo Chen, Senli Liu, “Multiplicity and concentration results for fractional Choquard equations: doubly critical case”, Nonlinear Anal., 198 (2020), 111872, 37 pp.
- Chun-Yu Lei, Binlin Zhang, “Ground state solutions for nonlinear Choquard equations with doubly critical exponents”, Appl. Math. Lett., 125 (2022), 107715, 7 pp.
- Э. Либ, М. Лосс, Анализ, Науч. кн., Новосибирск, 1998, 276 с.
- Zifei Shen, Fashun Gao, Minbo Yang, Groundstates for nonlinear fractional Choquard equations with general nonlinearities, 2014
- A. Szulkin, T. Weth, “The method of Nehari manifold”, Handbook of nonconvex analysis and applications, Int. Press, Somerville, MA, 2010, 597–632
- M. Willem, Minimax theorems, Progr. Nonlinear Differential Equations Appl., 24, Birkhäuser Boston, Inc., Boston, MA, 1996, x+162 pp.
Дополнительные файлы
