On unconditionality of fractional Rademacher chaos in symmetric spaces
- Authors: Astashkin S.V.1,2, Lykov K.V.3,4
-
Affiliations:
- Samara National Research University
- Bahçesehir University
- Belarusian State University
- Institute of Mathematics of the National Academy of Sciences of Belarus
- Issue: Vol 88, No 1 (2024)
- Pages: 3-20
- Section: Articles
- URL: https://bakhtiniada.ru/1607-0046/article/view/251853
- DOI: https://doi.org/10.4213/im9406
- ID: 251853
Cite item
Abstract
We study density estimates of an index set $\mathcal{A}$under which the unconditionality (or even the weaker property of randomunconditional divergence) of the corresponding Rademacher fractional chaos $\{r_{j_1}(t) \cdot r_{j_2}(t) \cdots r_{j_d}(t)\}_{(j_1,j_2,…,j_d)\in \mathcal{A}}$ in a symmetric space $X$ implies its equivalence in $X$to the canonical basis in $\ell_2$. In the special case of Orlicz spaces $L_M$, unconditionality of this system is also shown to be equivalent to the fact thata certain exponential Orlicz space embeds into $L_M$.
About the authors
Sergei Vladimirovich Astashkin
Samara National Research University; Bahçesehir University
Author for correspondence.
Email: astash@ssau.ru
ORCID iD: 0000-0002-8239-5661
Doctor of physico-mathematical sciences, Professor
Konstantin Vladimirovich Lykov
Belarusian State University; Institute of Mathematics of the National Academy of Sciences of Belarus
Email: alkv@list.ru
Scopus Author ID: 14819512500
Doctor of physico-mathematical sciences, no status
References
- A. Khintchine, “Über dyadische Brüche”, Math. Z., 18:1 (1923), 109–116
- С. В. Асташкин, Система Радемахера в функциональных пространствах, Физматлит, М., 2017, 549 с.
- U. Haagerup, “The best constants in the Khintchine inequality”, Studia Math., 70:3 (1981), 231–283
- S. J. Szarek, “On the best constants in the Khinchin inequality”, Studia Math., 58:2 (1976), 197–208
- Г. Пешкир, А. Н. Ширяев, “Неравенства Хинчина и мартингальное расширение сферы их действия”, УМН, 50:5(305) (1995), 3–62
- V. A. Rodin, E. M. Semyonov, “Rademacher series in symmetric spaces”, Anal. Math., 1:3 (1975), 207–222
- S. V. Astashkin, “Rademacher chaos in symmetric spaces”, East J. Approx., 4:3 (1998), 311–336
- S. V. Astashkin, “Rademacher chaos in symmetric spaces. II”, East J. Approx., 6:1 (2000), 71–86
- С. В. Асташкин, К. В. Лыков, “Разреженный хаос Радемахера в симметричных пространствах”, Алгебра и анализ, 28:1 (2016), 3–31
- R. C. Blei, “Fractional Cartesian products of sets”, Ann. Inst. Fourier (Grenoble), 29:2 (1979), 79–105
- R. Blei, “Combinatorial dimension and certain norms in harmonic analysis”, Amer. J. Math., 106:4 (1984), 847–887
- R. C. Blei, T. W. Körner, “Combinatorial dimension and random sets”, Israel J. Math., 47:1 (1984), 65–74
- R. Blei, Analysis in integer and fractional dimensions, Cambridge Stud. Adv. Math., 71, Cambridge Univ. Press, Cambridge, 2001, xx+556 pp.
- R. Blei, S. Janson, “Rademacher chaos: tail estimates versus limit theorems”, Ark. Mat., 42:1 (2004), 13–29
- R. Blei, Lin Ge, “Relationships between combinatorial measurements and Orlicz norms”, J. Funct. Anal., 257:3 (2009), 683–720
- R. Blei, Lin Ge, “Relationships between combinatorial measurements and Orlicz norms. II”, J. Funct. Anal., 257:12 (2009), 3949–3967
- С. Г. Крейн, Ю. И. Петунин, Е. М. Семенов, Интерполяция линейных операторов, Наука, М., 1978, 400 с.
- J. Lindenstrauss, L. Tzafriri, Classical Banach spaces, v. II, Ergeb. Math. Grenzgeb., 97, Function spaces, Springer-Verlag, Berlin–New York, 1979, x+243 pp.
- C. Bennett, R. Sharpley, Interpolation of operators, Pure Appl. Math., 129, Academic Press, Inc., Boston, MA, 1988, xiv+469 pp.
- П. Г. Матухин, Е. И. Островский, “Непараметрическое оценивание плотности по результатам многофакторных испытаний”, Теор. вероятн. и ее примен., 35:1 (1990), 72–82
- B. Jawerth, M. Milman, “New results and applications of extrapolation theory”, Interpolation spaces and related topics (Haifa, 1990), Israel Math. Conf. Proc., 5, Bar-Ilan Univ., Ramat Gan, 1992, 81–105
- М. А. Красносельский, Я. Б. Рутицкий, Выпуклые функции и пространства Орлича, Физматгиз, М., 1958, 271 с.
- G. G. Lorentz, “Relations between function spaces”, Proc. Amer. Math. Soc., 12:1 (1961), 127–132
- Я. Б. Рутицкий, “О некоторых классах измеримых функций”, УМН, 20:4(124) (1965), 205–208
- F. Albiac, N. J. Kalton, Topics in Banach space theory, Grad. Texts in Math., 233, Springer, New York, 2006, xii+373 pp.
- Б. С. Кашин, А. А. Саакян, Ортогональные ряды, 2-е изд., АФЦ, М., 1999, x+550 с.
- M. Sh. Braverman, Independent random variables and rearrangement invariant spaces, London Math. Soc. Lecture Note Ser., 194, Cambridge Univ. Press, Cambridge, 1994, viii+116 pp.
- P. Billard, S. Kwapien, A. Pelczyǹski, Ch. Samuel, “Biorthogonal systems of random unconditional convergence in Banach spaces”, Texas functional analysis seminar 1985–1986 (Austin, TX, 1985–1986), Longhorn Notes, Univ. Texas, Austin, TX, 1986, 13–35
- P. Wojtaszczyk, “Every separable Banach space containing $c_0$ has a RUC system”, Texas functional analysis seminar 1985–1986 (Austin, TX, 1985–1986), Longhorn Notes, Univ. Texas, Austin, TX, 1986, 37–39
- D. J. H. Garling, N. Tomczak-Jaegermann, “RUC-systems and Besselian systems in Banach spaces”, Math. Proc. Cambridge Philos. Soc., 106:1 (1989), 163–168
- P. G. Dodds, E. M. Semenov, F. A. Sukochev, “RUC systems in rearrangement invariant spaces”, Studia Math., 151:2 (2002), 161–173
- J. Lopez-Abad, P. Tradacete, “Bases of random unconditional convergence in Banach spaces”, Trans. Amer. Math. Soc., 368:12 (2016), 9001–9032
- S. V. Astashkin, G. P. Curbera, K. E. Tikhomirov, “On the existence of RUC systems in rearrangement invariant spaces”, Math. Nachr., 289:2-3 (2016), 175–186
- S. V. Astashkin, G. P. Curbera, “Random unconditional convergence and divergence in Banach spaces close to $L^1$”, Rev. Mat. Complut., 31:2 (2018), 351–377
- А. Н. Ширяев, Вероятность–1, 3-е изд., МЦНМО, М., 2004, 520 с.
- А. Зигмунд, Тригонометрические ряды, т. I, Мир, М., 1965, 615 с.
Supplementary files
