New approaches to $\mathfrak{gl}_N$ weight system

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The present paper has been motivated by an aspiration for understanding the weight system corresponding to the Lie algebra $\mathfrak{gl}_N$. The straightforward approach to computing the values of a Lie algebra weight system on a general chord diagram amounts to elaborating calculations in the noncommutative universal enveloping algebra, in spite of the fact that the result belongs to the center of the latter. The first approach is based on a suggestion due to M. Kazarian to define an invariant of permutations taking values in the center of the universal enveloping algebra of $\mathfrak{gl}_N$. The restriction of this invariant to involutions without fixed points (such an involution determines a chord diagram) coincides with the value of the $\mathfrak{gl}_N$ -weight system on this chord diagram. We describe the recursion allowing one to compute the $\mathfrak{gl}_N$ -invariant of permutations and demonstrate how it works in a number of examples. The second approach is based on the Harish-Chandra isomorphism for the Lie algebras $\mathfrak{gl}_N$. This isomorphism identifies the center of the universal enveloping algebra $\mathfrak{gl}_N$ with the ring $\lambda^*(N)$ of shifted symmetric polynomials in $N$ variables. The Harish-Chandra projection can be applied separately for each monomial in the defining polynomial of the weight system; as a result, the main body of computations can be done in a commutative algebra, rather than noncommutative one.

About the authors

Zhuoke Yang

International Laboratory of Cluster Geometry, National Research University "Higher School of Economics" (HSE)

Author for correspondence.
Email: izv@mi-ras.ru

without scientific degree, no status

References

  1. S. V. Chmutov, A. N. Varchenko, “Remarks on the Vassiliev knot invariants coming from $sl_2$”, Topology, 36:1 (1997), 153–178
  2. П. А. Филиппова, “Значения весовой системы, отвечающей алгебре Ли $mathfrak{sl}_2$, на полных двудольных графах”, Функц. анализ и его прил., 54:3 (2020), 73–93
  3. П. А. Филиппова, “Значения $mathfrak{sl}_2$-весовой системы на семействе графов, не являющихся графами пересечений хордовых диаграмм”, Матем. сб., 213:2 (2022), 115–148
  4. П. Е. Закорко, “Значения $mathfrak{sl}_2$-весовой системы на хордовых диаграммах с полным графом пересечений”, Матем. сб., 214:7 (2023), 42–59
  5. Zhuoke Yang, On values of $mathfrak{sl}_3$ weight system on chord diagrams whose intersection graph is complete bipartite
  6. J. M. Figueroa-O'Farrill, T. Kimura, A. Vaintrob, “The universal Vassiliev invariant for the Lie superalgebra ${gl}(1|1)$”, Comm. Math. Phys., 185:1 (1997), 93–127
  7. S. V. Chmutov, S. K. Lando, “Mutant knots and intersection graphs”, Algebr. Geom. Topol., 7:3 (2007), 1579–1598
  8. S. Chmutov, S. Duzhin, “A lower bound for the number of Vassiliev knot invariants”, Topology Appl., 92:3 (1999), 201–223
  9. O. T. Dasbach, “On the combinatorial structure of primitive Vassiliev invariants. III. A lower bound”, Commun. Contemp. Math., 2:4 (2000), 579–590
  10. S. Chmutov, S. Duzhin, J. Mostovoy, Introduction to Vassiliev knot invariants, Cambridge Univ. Press, Cambridge, 2012, xvi+504 pp.
  11. М. Э. Казарян, С. К. Ландо, “Весовые системы и инварианты графов и вложенных графов”, УМН, 77:5(467) (2022), 131–184
  12. Zhuoke Yang, “On the Lie superalgebra $mathfrak{gl}(m|n)$ weight system”, J. Geom. Phys., 187 (2023), 104808, 11 pp.
  13. M. Kontsevich, “Vassiliev's knot invariants”, I. M. Gel'fand seminar, Part 2, Adv. Soviet Math., 16, Part 2, Amer. Math. Soc., Providence, RI, 1993, 137–150
  14. D. Bar-Natan, “On the Vassiliev knot invariants”, Topology, 34:2 (1995), 423–472
  15. Д. П. Желобенко, Компактные группы Ли и их представления, Наука, М., 1970, 664 с.
  16. А. Окуньков, Г. Ольшанский, “Сдвинутые функции Шура”, Алгебра и анализ, 9:2 (1997), 73–146
  17. А. М. Переломов, В. С. Попов, “Операторы Казимира для полупростых групп Ли”, Изв. АН СССР. Сер. матем., 32:6 (1968), 1368–1390
  18. G. I. Olshanskii, “Representations of infinite-dimensional classical groups, limits of enveloping algebras, and Yangians”, Topics in representation theory, Adv. Soviet Math., 2, Amer. Math. Soc., Providence, RI, 1991, 1–66
  19. S. K. Lando, “On a Hopf algebra in graph theory”, J. Combin. Theory Ser. B, 80:1 (2000), 104–121
  20. W. R. Schmitt, “Incidence Hopf algebras”, J. Pure Appl. Algebra, 96:3 (1994), 299–330

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 Ян Ч.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).