Existence and uniqueness of solution of a certain boundary-value problem for a convolution integral equation with monotone non-linearity

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

We study the existence and uniqueness as well as the asymptotic behaviour ofsolutions of a certain boundary-value problem for a convolution integral equation on the whole line with monotone non-linearity. In some special cases, there are concrete applications to $p$-adic string theory, the mathematical theory of the geographical spread of an epidemic, the kinetic theory of gases and the theory of radiation transfer. We prove \linebreak the existence and uniqueness of an odd bounded continuous solution. The monotonicity and the integral asymptotics of this solution is also discussed. We finally give particular application-oriented examples of the equations considered, which illustrate the special nature of our results.

About the authors

Khachatur Aghavardovich Khachatryan

Institute of Mathematics, National Academy of Sciences of Armenia

Email: khachatur.khachatryan@ysu.am
Doctor of physico-mathematical sciences, Professor

References

  1. В. С. Владимиров, “О нелинейных уравнениях $p$-адических открытых, замкнутых и открыто-замкнутых струн”, ТМФ, 149:3 (2006), 354–367
  2. Л. В. Жуковская, “Итерационний метод решения нелинейных интегральных уравнений, описывающих роллинговые решения в теории струн”, ТМФ, 146:3 (2006), 402–409
  3. В. С. Владимиров, Я. И. Волович, “О нелинейном уравнении динамики в теории $p$-адической струны”, ТМФ, 138:3 (2004), 355–368
  4. Л. В. Жуковская, “Сохранение энергии для уравнений $p$-адической струны и уравнений струнной теории поля”, Избранные вопросы $p$-адической математической физики и анализа, Сборник статей. К 80-летию со дня рождения академика Василия Сергеевича Владимирова, Тр. МИАН, 245, Наука, МАИК «Наука/Интерпериодика», М., 2004, 107–113
  5. O. Diekmann, “Thresholds and travelling waves for the geographical spread of infection”, J. Math. Biol., 1987, no. 6, 109–130
  6. O. Diekmann, “Run for your life. A note on the asymptotic speed of propagation of an epidemic”, J. Differential Equations, 33:1 (1979), 58–73
  7. Х. А. Хачатрян, “О разрешимости некоторых классов нелинейных интегральных уравнений в теории $p$-адической струны”, Изв. РАН. Сер. матем., 82:2 (2018), 172–193
  8. Х. А. Хачатрян, “О разрешимости одной граничной задачи в $p$-адической теории струн”, Тр. ММО, 79, № 1, МЦНМО, М., 2018, 117–132
  9. Н. К. Карапетянц, “Нелинейное уравнение Винера–Хопфа”, Деп. в ВИНИТИ 23.01.85, № 646-85, РЖМат, 1985, 4Б686, 47 с.
  10. Н. Б. Енгибарян, “Об одной задаче нелинейного переноса излучения”, Астрофизика, 2:1 (1966), 31–36
  11. А. Х. Хачатрян, Х. А. Хачатрян, “О разрешимости нелинейного модельного уравнения Больцмана в задаче плоской ударной волны”, ТМФ, 189:2 (2016), 239–255
  12. A. Kh. Khachatryan, Kh. A. Khachatryan, “A uniqueness theorem for a nonlinear singular integral equation arising in $p$-adic string theory”, Уч. зап. ЕГУ. Сер. Физ. Матем., 53:1 (2019), 17–22
  13. Х. А. Хачатрян, “О разрешимости одной системы нелинейных интегральных уравнений типа Гаммерштейна на прямой”, Изв. Сарат. ун-та. Нов. сер. Сер. Математика. Механика. Информатика, 19:2 (2019), 164–181
  14. А. Н. Колмогоров, С. В. Фомин, Элементы теории функций и функционального анализа, 5-е изд., Наука, М., 1981, 544 с.
  15. Г. Г. Геворкян, Н. Б. Енгибарян, “Новые теоремы для интегрального уравнения восстановления”, Изв. НАН Армении. Матем., 32:1 (1997), 5–20

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2020 Хачатрян Х.A.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».