“Far-field interaction” of concentrated masses in two-dimensional Neumann and Dirichlet problems
- Authors: Nazarov S.A.1
-
Affiliations:
- Institute of Problems of Mechanical Engineering, Russian Academy of Sciences
- Issue: Vol 87, No 1 (2023)
- Pages: 65-118
- Section: Articles
- URL: https://bakhtiniada.ru/1607-0046/article/view/142250
- DOI: https://doi.org/10.4213/im9262
- ID: 142250
Cite item
Abstract
About the authors
Sergei Aleksandrovich Nazarov
Institute of Problems of Mechanical Engineering, Russian Academy of Sciences
Email: srgnazarov@yahoo.co.uk
Doctor of physico-mathematical sciences, Professor
References
- О. А. Ладыженская, Краевые задачи математической физики, Наука, М., 1973, 407 с.
- E. Sanchez-Palencia, “Perturbation of eigenvalues in thermoelasticity and vibration of systems with concentrated masses”, Trends in applications of pure mathematics to mechanics (Palaiseau, 1983), Lecture Notes in Phys., 195, Springer, Berlin, 1984, 346–368
- О. А. Олейник, “О собственных колебаниях тел с концентрированными массами”, Современные проблемы прикладной математики и математической физики, Наука, М., 1988, 101–128
- C. Leal, J. Sanchez-Hubert, “Perturbation of the eigenvalues of a membrane with a concentrated mass”, Quart. Appl. Math., 47:1 (1989), 93–103
- J. Sanchez Hubert, E. Sanchez Palencia, Vibration and coupling of continuous systems. Asymptotic methods, Springer-Verlag, Berlin, 1989, xvi+421 pp.
- Ю. Д. Головатый, C. А. Назаров, О. А. Олейник, “Асимптотические разложения собственных значений и собственных функций задач о колебаниях среды с концентрированными возмущениями”, Дифференциальные уравнения и функциональные пространства, Сборник статей. Посвящается памяти академика Сергея Львовича Соболева, Тр. МИАН СССР, 192, Наука, М., 1990, 42–60
- O. A. Oleinik, J. Sanchez-Hubert, G. A. Yosifian, “On vibrations of a membrane with concentrated masses”, Bull. Sci. Math., 115:1 (1991), 1–27
- D. Gomez, M. Lobo, E. Perez, “On the eigenfunctions associated with the high frequencies in systems with a concentrated mass”, J. Math. Pures Appl. (9), 78:8 (1999), 841–865
- M. Lobo, E. Perez, “Local problems for vibrating systems with concentrated masses: a review”, C. R. Mecanique, 331:4 (2003), 303–317
- А. Г. Чечкина, “О поведении спектра возмущенной краевой задачи Стеклова со слабой сингулярностью”, Дифференц. уравнения, 57:10 (2021), 1407–1420
- S. A. Nazarov, “Interaction of concentrated masses in a harmonically oscillating spatial body with Neumann boundary conditions”, RAIRO Model. Math. Anal. Numer., 27:6 (1993), 777–799
- C. А. Назаров, “Об одной задаче Санчес-Паленсия с краевыми условиями Неймана”, Изв. вузов. Матем., 1989, № 11, 60–66
- J. Cainzos, E. Perez, M. Vilasanchez, “Asymptotics for the eigenelements of the Neumann spectral problem with concentrated masses”, Indiana Univ. Math. J., 56:4 (2007), 1939–1987
- C. А. Назаров, В. Киадо Пиат, “Смешанные краевые задачи в сингулярно возмущенных двумерных областях со спектральным условием Стеклова”, Проблемы матем. анализа, 106 (2020), 91–124
- В. Г. Мазья, C. А. Назаров, Б. А. Пламеневский, “Асимптотические разложения собственных чисел краевых задач для оператора Лапласа в областях с малыми отверстиями”, Изв. АН СССР. Сер. матем., 48:2 (1984), 347–371
- W. G. Mazja, S. A. Nasarow, B. A. Plamenewski, Asymptotische Theorie elliptischer Randwertaufgaben in singulär gestörten Gebieten, v. 1, Math. Lehrbücher Monogr. II. Abt. Math. Monogr., 82, Akademie-Verlag, Berlin, 1991, 432 pp.
- А. М. Ильин, “Краевая задача для эллиптического уравнения второго порядка в области с узкой щелью. I. Двумерный случай”, Матем. сб., 99(141):4 (1976), 514–537
- А. М. Ильин, Согласование асимптотических разложений решений краевых задач, Наука, М., 1989, 336 с.
- M. Lanza de Cristoforis, “Asymptotic behavior of the solutions of the Dirichlet problem for the Laplace operator in a domain with a small hole. A functional analytic approach”, Analysis (Munich), 28:1 (2008), 63–93
- M. Lanza de Cristoforis, “Simple Neumann eigenvalues for the Laplace operator in a domain with a small hole. A functional analytic approach”, Rev. Mat. Complut., 25:2 (2012), 369–412
- C. А. Назаров, Б. А. Пламеневский, “Задача Неймана для самосопряженных эллиптических систем в области с кусочно гладкой границей”, Тр. ЛМО, 1, Изд-во Ленингр. ун-та, Л., 1990, 174–211
- S. A. Nazarov, “Weighted spaces with detached asymptotics in application to the Navier–Stokes equations”, Advances in mathematical fluid mechanics (Paseky, 1999), Springer, Berlin, 2000, 159–191
- C. А. Назаров, “Асимптотические условия в точках, самосопряженные расширения операторов и метод сращиваемых асимптотических разложений”, Тр. СПбМО, 5, Науч. кн., Новосибирск, 1998, 112–183
- М. Д. Ван Дайк, Методы возмущений в механике жидкостей, Мир, М., 1967, 310 с.
- Т. Като, Теория возмущений линейных операторов, Мир, М., 1972, 740 с.
- Г. Г. Xapди, Д. Е. Литтлвуд, Г. Полиа, Неравенства, 2-е изд., стер., КомКнига, М., 2006, 458 с.
- В. И. Смирнов, Курс высшей математики, т. 4, Ч. 1, 6-е изд., Наука, М., 1974, 336 с.
- В. С. Владимиров, Обобщенные функции в математической физике, 2-е изд., Наука, М., 1979, 319 с.
- В. А. Кондратьев, “Краевые задачи для эллиптических уравнений в областях с коническими или угловыми точками”, Тр. ММО, 16, Изд-во Моск. ун-та, М., 1967, 209–292
- С. А. Назаров, Б. А. Пламеневский, Эллиптические задачи в областях с кусочно гладкой границей, Наука, М., 1991, 336 с.
- C. А. Назаров, “Полиномиальное свойство самосопряженных эллиптических краевых задач и алгебраическое описание их атрибутов”, УМН, 54:5(329) (1999), 77–142
- И. Ц. Гохберг, М. Г. Крейн, Введение в теорию линейных несамосопряженных операторов, Наука, М., 1965, 448 с.
- М. М. Вайнберг, В. А. Треногин, Теория ветвления решений нелинейных уравнений, Наука, М., 1969, 527 с.
- M. Lanza de Cristoforis, “Multiple eigenvalues for the Steklov problem in a domain with a small hole. A functional analytic approach”, Asymptot. Anal., 121:3-4 (2021), 335–365
- М. Ш. Бирман, М. З. Соломяк, Спектральная теория самосопряженных операторов в гильбертовом пространстве, Изд-во Ленингр. ун-та, Л., 1980, 264 с.
- М. И. Вишик, Л. А. Люстерник, “Регулярное вырождение и пограничный слой для линейных дифференциальных уравнений с малым параметром”, УМН, 12:5(77) (1957), 3–122
- С. А. Назаров, Ю. А. Ромашов, “Изменение коэффициента интенсивности при разрушении перемычки между двумя коллинеарными трещинами”, Изв. АН АрмССР. Механика, 1982, № 4, 30–40
Supplementary files
