О нетривиальной разрешимости одной системы нелинейных интегральных уравнений на всей прямой

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Рассматривается система сингулярных интегральных уравнений с монотонной и выпуклой нелинейностью на всей числовой прямой. Данная система имеет приложения во многих направлениях естествознания. В частности, такие системы встречаются в теории $p$-адических открыто-замкнутых струн, в математической теории пространственно-временного распространения эпидемии в рамках известной модели Дикмана–Капера, в кинетической теории газов, в теории переноса излучения. Доказывается теорема существования нетривиального и ограниченного решения. Исследуется также асимптотическое поведение построенного решения на $\pm\infty$. Приводятся конкретные примеры нелинейностей и ядерных функций, имеющих прикладной характер.Библиография: 18 наименований.

Полный текст

Доступ закрыт

Об авторах

Хачатур Агавардович Хачатрян

Ереванский государственный университет; Московский государственный университет имени М. В. Ломоносова

Email: khachatur.khachatryan@ysu.am
доктор физико-математических наук, профессор

Айкануш Самвеловна Петросян

Национальный аграрный университет Армении; Московский государственный университет имени М. В. Ломоносова

Email: Haykuhi25@mail.ru
кандидат физико-математических наук, доцент

Список литературы

  1. П. Ланкастер, Теория матриц, Наука, М., 1978, 280 с.
  2. В. С. Владимиров, Я. И. Волович, “О нелинейном уравнении динамики в теории $p$-адической струны”, ТМФ, 138:3 (2004), 355–368
  3. В. С. Владимиров, “О решениях $p$-адических струнных уравнений”, ТМФ, 167:2 (2011), 163–170
  4. Х. А. Хачатрян, “О разрешимости одной граничной задачи в $p$-адической теории струн”, Тр. ММО, 79, № 1, МЦНМО, М., 2018, 117–132
  5. O. Diekmann, H. G. Kaper, “On the bounded solutions of a nonlinear convolution equation”, Nonlinear Anal., 2:6 (1978), 721–737
  6. O. Diekmann, “Thresholds and travelling waves for the geographical spread of infection”, J. Math. Biol., 6:2 (1978), 109–130
  7. А. Х. Хачатрян, Х. А. Хачатрян, “О разрешимости нелинейного модельного уравнения Больцмана в задаче плоской ударной волны”, ТМФ, 189:2 (2016), 239–255
  8. C. Cercignani, The Boltzmann equation and its applications, Appl. Math. Sci., 67, Springer-Verlag, New-York, 1988, xii+455 pp.
  9. Н. Б. Енгибарян, “Об одной задаче нелинейного переноса излучения”, Астрофизика, 2:1 (1966), 31–36
  10. Х. А. Хачатрян, “О разрешимости одной системы нелинейных интегральных уравнений типа Гаммерштейна на прямой”, Изв. Сарат. ун-та. Нов. сер. Сер. Математика. Механика. Информатика, 19:2 (2019), 164–181
  11. O. Diekmann, “Run for your life. A note on the asymptotic speed of propagation of an epidemic”, J. Differential Equations, 33:1 (1979), 58–73
  12. Х. А. Хачатрян, “О разрешимости некоторых классов нелинейных интегральных уравнений в теории $p$-адической струны”, Изв. РАН. Сер. матем., 82:2 (2018), 172–193
  13. Х. А. Хачатрян, “Существование и единственность решения одной граничной задачи для интегрального уравнения свертки с монотонной нелинейностью”, Изв. РАН. Сер. матем., 84:4 (2020), 198–207
  14. Kh. A. Khachatryan, H. S. Petrosyan, “Integral equations on the whole line with monotone nonlinearity and difference kernel”, J. Math. Sci. (N.Y.), 255:6 (2021), 790–804
  15. А. Н. Колмогоров, С. В. Фомин, Элементы теории функций и функционального анализа, 5-е изд., Наука, М., 1981, 544 с.
  16. У. Рудин, Функциональный анализ, Мир, М., 1975, 443 с.
  17. Н. Б. Енгибарян, “Консервативные системы интегральных уравнений свертки на полупрямой и всей прямой”, Матем. сб., 193:6 (2002), 61–82
  18. Л. Г. Арабаджян, А. С. Хачатрян, “Об одном классе интегральных уравнений типа свертки”, Матем. сб., 198:7 (2007), 45–62

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Хачатрян Х.А., Петросян А.С., 2023

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).