Fermions from classical probability and statistics defined by stochastic independence
- Authors: Accardi L.1, Lu Y.G.2
-
Affiliations:
- Università degli Studi di Roma — Tor Vergata
- Universitá degli Studi di Bari
- Issue: Vol 87, No 5 (2023)
- Pages: 5-40
- Section: Articles
- URL: https://bakhtiniada.ru/1607-0046/article/view/140427
- DOI: https://doi.org/10.4213/im9389
- ID: 140427
Cite item
Abstract
Full Text

About the authors
Luigi Accardi
Università degli Studi di Roma — Tor Vergata
Email: accardi@volterra.mat.uniroma2.it
Yun Gang Lu
Universitá degli Studi di Bari
References
- L. Accardi, Yun-Gang Lu, “The $qq$-bit (I): Central limits with left $q$-Jordan–Wigner embeddings, monotone interacting Fock space, Azema random variable, probabilistic meaning of $q$”, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 21:4 (2018), 1850030, 53 pp.
- R. Lenczewski, “Unification of independence in quantum probability”, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 1:3 (1998), 383–405
- V. Liebscher, “On a central limit theorem for monotone noise”, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 2:1 (1999), 155–167
- L. Accardi, A. Boukas, Yun-Gang Lu, A. Teretenkov, “The non-linear and quadratic quantization programs”, Infinite dimensional analysis, quantum probability and applications (Al Ain, UAE, 2021), Springer Proc. Math. Stat., 390, Springer, Cham, 2022, 3–53
- L. Accardi, “Classical and quantum conditioning: mathematical and information theoretical aspects”, Quantum bio-informatics III. From quantum informatics to bio-informatics, QP-PQ: Quantum Probab. White Noise Anal., 26, World Sci. Publ., Hackensack, NJ, 2009, 1–16
Supplementary files
