On the coprimeness relation from the viewpoint of monadic second-order logic
- Authors: Speranski S.O.1, Pakhomov F.N.1,2
 - 
							Affiliations: 
							
- Steklov Mathematical Institute of Russian Academy of Sciences
 - Ghent University
 
 - Issue: Vol 86, No 6 (2022)
 - Pages: 207-222
 - Section: Articles
 - URL: https://bakhtiniada.ru/1607-0046/article/view/133918
 - DOI: https://doi.org/10.4213/im9340
 - ID: 133918
 
Cite item
Abstract
About the authors
Stanislav Olegovich Speranski
Steklov Mathematical Institute of Russian Academy of Sciences
														Email: katze.tail@gmail.com
				                					                																			                								Candidate of physico-mathematical sciences, no status				                														
Fedor Nikolaevich Pakhomov
Steklov Mathematical Institute of Russian Academy of Sciences; Ghent University
														Email: pakhfn@gmail.com
				                					                																			                								Candidate of physico-mathematical sciences, Senior Researcher				                														
References
- D. Richard, “What are weak arithmetics?”, Theoret. Comput. Sci., 257:1-2 (2001), 17–29
 - J. Y. Halpern, “Presburger arithmetic with unary predicates is $Pi_1^1$ complete”, J. Symbolic Logic, 56:2 (1991), 637–642
 - S. O. Speranski, “A note on definability in fragments of arithmetic with free unary predicates”, Arch. Math. Logic, 52:5-6 (2013), 507–516
 - A. Bès, D. Richard, “Undecidable extensions of Skolem arithmetic”, J. Symbolic Logic, 63:2 (1998), 379–401
 - J. Robinson, “Definability and decision problems in arithmetic”, J. Symbolic Logic, 14:2 (1949), 98–114
 - A. Bès, “A survey of arithmetical definability”, A tribute to Maurice Boffa, Bull. Belg. Math. Soc. Simon Stevin, suppl., Soc. Math. Belgique, Brussels, 2001, 1–54
 - S. O. Speranski, “Some new results in monadic second-order arithmetic”, Computability, 4:2 (2015), 159–174
 - Х. Роджерс, Теория рекурсивных функций и эффективная вычислимость, Мир, М., 1972, 624 с.
 - J. R. Büchi, “Weak second-order arithmetic and finite automata”, Z. Math. Logik Grundlagen Math., 6:1-6 (1960), 66–92
 - J. R. Büchi, “On a decision method in restricted second order arithmetic”, Logic, methodology and philosophy of science (1960), Stanford Univ. Press, Stanford, CA, 1962, 1–11
 
Supplementary files
				
			
					
						
						
						
						
				
