The boundary behavior of $\mathcal Q_{p,q}$-homeomorphisms
- Authors: Vodopyanov S.K.1, Molchanova A.O.2
-
Affiliations:
- Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences
- University of Vienna
- Issue: Vol 87, No 4 (2023)
- Pages: 47-90
- Section: Articles
- URL: https://bakhtiniada.ru/1607-0046/article/view/133915
- DOI: https://doi.org/10.4213/im9376
- ID: 133915
Cite item
Abstract
About the authors
Sergei Konstantinovich Vodopyanov
Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences
Email: vodopis@math.nsc.ru
Doctor of physico-mathematical sciences, Professor
Anastasia Olegovna Molchanova
University of Vienna
Email: a.molchanova@math.nsc.ru
Candidate of physico-mathematical sciences, no status
References
- C. Caratheodory, “Über die Begrenzung einfach zusammenhängender Gebiete”, Math. Ann., 73:3 (1913), 323–370
- W. F. Osgood, E. H. Taylor, “Conformal transformations on the boundaries of their regions of definition”, Trans. Amer. Math. Soc., 14:2 (1913), 277–298
- Г. Д. Суворов, “Простые концы последовательности плоских областей, сходящейся к ядру”, Матем. сб., 33(75):1 (1953), 73–100
- D. B. A. Epstein, “Prime ends”, Proc. London Math. Soc. (3), 42:3 (1981), 385–414
- В. А. Зорич, “Соответствие границ при $Q$-квазиконформных отображениях шара”, Докл. АН СССР, 145:6 (1962), 1209–1212
- В. Зорич, “Определение граничных элементов посредством сечений”, Докл. АН СССР, 164:4 (1965), 736–739
- A. Björn, J. Björn, N. Shanmugalingam, “The {D}irichlet problem for $p$-harmonic functions with respect to the Mazurkiewicz boundary, and new capacities”, J. Differential Equations, 259:7 (2015), 3078–3114
- J. Milnor, Dynamics in one complex variable, Ann. of Math. Stud., 160, 3rd ed., Princeton Univ. Press, Princeton, NJ, 2006, viii+304 pp.
- L. Rempe, “On prime ends and local connectivity”, Bull. Lond. Math. Soc., 40:5 (2008), 817–826
- Г. Д. Суворов, Простые концы и последовательности плоских отображений, Наукова думка, Киев, 1986, 160 с.
- T. Adamowicz, A. Björn, J. Björn, N. Shanmugalingam, “Prime ends for domains in metric spaces”, Adv. Math., 238 (2013), 459–505
- T. Adamowicz, “Prime ends in metric spaces and quasiconformal-type mappings”, Anal. Math. Phys., 9:4 (2019), 1941–1975
- Д. А. Ковтонюк, В. И. Рязанов, “Простые концы и классы Орлича–Соболева”, Алгебра и анализ, 27:5 (2015), 81–116
- T. Kuusalo, “Quasiconformal mappings without boundary extensions”, Ann. Acad. Sci. Fenn. Ser. A I Math., 10 (1985), 331–338
- E. C. Schlesinger, “Conformal invariants and prime ends”, Amer. J. Math., 80 (1958), 83–102
- R. Näkki, Boundary behavior of quasiconformal mappings in $n$-space, Ann. Acad. Sci. Fenn. Ser. A I, 484, Suomalainen Tiedeakademia, Helsinki, 1970, 50 pp.
- R. Näkki, “Prime ends and quasiconformal mappings”, J. Anal. Math., 35 (1979), 13–40
- J. Väisälä, Lectures on $n$-dimensional quasiconformal mappings, Lecture Notes in Math., 229, Springer-Verlag, Berlin–New York, 1971, xiv+144 pp.
- M. Vuorinen, Exceptional sets and boundary behavior of quasiregular mappings in $n$-space, Ann. Acad. Sci. Fenn. Ser. A I Math. Dissertationes, 11, Suomalainen Tiedeakatemia, Helsinki, 1976, 44 pp.
- M. Vuorinen, “On the boundary behavior of locally $K$-quasiconformal mappings in space”, Ann. Acad. Sci. Fenn. Ser. A I Math., 5:1 (1980), 79–95
- O. Martio, V. Ryazanov, U. Srebro, E. Yakubov, Moduli in modern mapping theory, Springer Monogr. Math., Springer, New York, 2009, xii+367 pp.
- Е. А. Севостьянов, “О граничном продолжении и равностепенной непрерывности семейств отображений в терминах простых концов”, Алгебра и анализ, 30:6 (2018), 97–146
- M. Cristea, “Boundary behaviour of the mappings satisfying generalized inverse modular inequalities”, Complex Var. Elliptic Equ., 60:4 (2015), 437–469
- С. К. Водопьянов, “О граничном соответствии при квазиконформных отображениях пространственных областей”, Сиб. матем. журн., 16:3 (1975), 630–633
- В. М. Гольдштейн, С. К. Водопьянов, “Метрическое пополнение области при помощи конформной емкости, инвариантное при квазиконформных отображениях”, Докл. АН СССР, 238:5 (1978), 1040–1042
- С. К. Водопьянов, В. М. Гольдштейн, Ю. Г. Решетняк, “О геометрических свойствах функций с первыми обощенными производными”, УМН, 34:1(205) (1979), 17–65
- В. И. Кругликов, “Простые концы пространственных областей с переменными границами”, Докл. АН СССР, 297:5 (1987), 1047–1050
- С. K. Водопьянов, “О регулярности отображений, обратных к соболевским”, Матем. сб., 203:10 (2012), 3–32
- С. К. Водопьянов, “Операторы композиции весовых пространства Соболева и теория $mathscr Q_p$-гомеоморфизмов”, Докл. РАН. Матем., информ., проц. упр., 494 (2020), 21–25
- С. К. Водопьянов, “Об аналитических и геометрических свойствах отображений в теории $mathscr Q_{q,p}$-гомеоморфизмов”, Матем. заметки, 108:6 (2020), 925–929
- С. К. Водопьянов, “О регулярности отображений, обратных к соболевским, и теория $mathscr Q_{q,p}$-гомеоморфизмов”, Сиб. матем. журн., 61:6 (2020), 1257–1299
- С. К. Водопьянов, А. О. Томилов, “Функциональные и аналитические свойства одного класса отображений квазиконформного анализа”, Изв. РАН. Сер. матем., 85:5 (2021), 58–109
- С. К. Водопьянов, “Об эквивалентности двух подходов к задачам квазиконформного анализа”, Сиб. матем. журн., 62:6 (2021), 1252–1270
- С. К. Водопьянов, “О совпадении функций множества в квазиконформном анализе”, Матем. сб., 213:9 (2022), 3–33
- С. К. Водопьянов, “Основы квазиконформного анализа двухиндексной шкалы пространственных отображений”, Сиб. матем. журн., 59:5 (2018), 1020–1056
- С. К. Водопьянов, “О дифференцируемости отображений класса Соболева $W^1_{n-1}$ с условиями на функцию искажения”, Сиб. матем. журн., 59:6 (2018), 1240–1267
- А. Д. Ухлов, “Отображения, порождающие вложения пространств Соболева”, Сиб. матем. журн., 34:1 (1993), 185–192
- С. К. Водопьянов, А. Д. Ухлов, “Пространства Соболева и $(P,Q)$-квазиконформные отображения групп Карно”, Сиб. матем. журн., 39:4 (1998), 776–795
- С. К. Водопьянов, А. Д. Ухлов, “Операторы суперпозиции в пространствах Соболева”, Изв. вузов. Матем., 2002, № 10, 11–33
- С. Л. Соболев, Некоторые применения функционального анализа в математической физике, Изд-во Ленингр. ун-та, Л., 1950, 255 с.
- В. Г. Мазья, Пространства С. Л. Соболева, Изд-во Ленингр. ун-та, Л., 1985, 416 с.
- Г. Д. Мостов, “Квазиконформные отображения в $n$-мерном пространстве и жесткость гиперболических пространственных форм”, Математика, 16:5 (1972), 105–157
- F. W. Gehring, “Lipschitz mappings and $p$-capacity of rings in $n$-space”, Advances in the theory of Riemann surfaces (Stony Brook, NY, 1969), Ann. of Math. Stud., 66, Princeton Univ. Press, Princeton, NJ, 1971, 175–193
- Ю. Г. Решетняк, Пространственные отображения с ограниченным искажением, Наука, Новосибирск, 1982, 286 с.
- F. W. Gehring, J. Väisälä, “The coefficients of quasiconformality of domains in space”, Acta Math., 114 (1965), 1–70
- H. M. Reimann, “Über harmonische Kapazität und quasikonforme Abbildungen im Raum”, Comment. Math. Helv., 44 (1969), 284–307
- J. Lelong-Ferrand, “Etude d'une classe d'applications liees à des homomorphismes d'algebres de fonctions, et generalisant les quasi-conformes”, Duke Math. J., 40 (1973), 163–186
- C. К. Водопьянов, “Допустимые замены переменных для функций классов Соболева на (суб)римановых многообразиях”, Матем. сб., 210:1 (2019), 63–112
- A. Molchanova, S. Vodopyanov, “Injectivity almost everywhere and mappings with finite distortion in nonlinear elasticity”, Calc. Var. Partial Differential Equations, 59:1 (2020), 17, 25 pp.
- J. Heinonen, T. Kilpeläinen, O. Martio, Nonlinear potential theory of degenerate elliptic equations, Oxford Math. Monogr., The Clarendon Press, Oxford Univ. Press, New York, 1993, vi+363 pp.
- T. Rado, P. V. Reichelderfer, Continuous transformations in analysis. With an introduction to algebraic topology, Grundlehren Math. Wiss., LXXV, Springer-Verlag, Berlin–Göttingen–Heidelberg, 1955, vii+442 pp.
- M. Гусман, Дифференцирование интегралов в $mathbb{R}^n$, Математика: новое в зарубежной науке, 9, Мир, М., 1978, 200 с.
- С. К. Водопьянов, А. Д. Ухлов, “Функции множества и их приложения в теории пространств Лебега и Соболева. I”, Матем. тр., 6:2 (2003), 14–65
- S. K. Vodopyanov, “On Poletsky-type modulus inequalities for some classes of mappings”, Владикавк. матем. журн., 24:4 (2022), 58–69
- D. V. Isangulova, S. K. Vodopyanov, “Coercive estimates and integral representation formulas on Carnot groups”, Eurasian Math. J., 1:3 (2010), 58–96
- Ю. Г. Решетняк, “О понятии емкости в теории функций с обобщенными производными”, Сиб. матем. журн., 10:5 (1969), 1109–1138
- Г. Е. Шилов, Математический анализ. Специальный курс, Физматгиз, М., 1961, 436 с.
- F. Hausdorff, Set theory, Transl. from the German, 2nd ed., Chelsea Publishing Co., New York, 1962, 352 pp.
- R. R. Salimov, E. A. Sevost'yanov, “$ACL$ and differentiability of open discrete ring $(p, Q)$-mappings”, Mat. Stud., 35:1 (2011), 28–36
- В. И. Рязанов, Е. А. Севостьянов, “Равностепенная непрерывность квазиконформных в среднем отображений”, Сиб. матем. журн., 52:3 (2011), 665–679
- Р. Р. Салимов, “Абсолютная непрерывность на линиях и дифференцируемость одного обобщения квазиконформных отображений”, Изв. РАН. Сер. матем., 72:5 (2008), 141–148
- R. Salimov, “$ACL$ and differentiability of $Q$-homeomorphisms”, Ann. Acad. Sci. Fenn. Math., 33:1 (2008), 295–301
- Р. Р. Салимов, Е. А. Севостьянов, “Теория кольцевых $Q$-отображений в геометрической теории функций”, Матем. сб., 201:6 (2010), 131–158
- E. Sevost'yanov, S. Skvortsov, On behavior of homeomorphisms with inverse modulus conditions, 2018
- Р. Р. Салимов, Е. А. Севостьянов, “О некоторых локальных свойствах пространственных обобщенных квазиизометрий”, Матем. заметки, 101:4 (2017), 594–610
- R. Salimov, “On $Q$-homeomorphisms with respect to $p$-modulus”, Ann. Univ. Buchar. Math. Ser., 2(LX):2 (2011), 207–213
- М. В. Трямкин, “Граничное соответствие для гомеоморфизмов с весовым ограниченным $(p,q)$-искажением”, Матем. заметки, 102:4 (2017), 632–636
- J. Hesse, “A $p$-extremal length and $p$-capacity equality”, Ark. Mat., 13:1-2 (1975), 131–144
- В. А. Шлык, “О равенстве $p$-емкости и $p$-модуля”, Сиб. матем. журн., 34:6 (1993), 216–221
- H. Aikawa, M. Ohtsuka, “Extremal length of vector measures”, Ann. Acad. Sci. Fenn. Math., 24:1 (1999), 61–88
- V. Gol'dshtein, A. Ukhlov, Boundary values of functions of Dirichlet spases $L^1_2$ on capacitary boundaries, 2014
- E. Afanas'eva, V. Ryazanov, R. Salimov, E. Sevost'yanov, “On boundary extension of Sobolev classes with critical exponent by prime ends”, Lobachevskii J. Math., 41:11 (2020), 2091–2102
Supplementary files
