On higher-dimensional del Pezzo varieties
- 作者: Kuznetsov A.G.1,2, Prokhorov Y.G.1,3,2
-
隶属关系:
- Steklov Mathematical Institute of Russian Academy of Sciences
- Laboratory of algebraic geometry and its applications, National Research University "Higher School of Economics" (HSE)
- Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
- 期: 卷 87, 编号 3 (2023)
- 页面: 75-148
- 栏目: Articles
- URL: https://bakhtiniada.ru/1607-0046/article/view/133913
- DOI: https://doi.org/10.4213/im9385
- ID: 133913
如何引用文章
详细
作者简介
Alexander Kuznetsov
Steklov Mathematical Institute of Russian Academy of Sciences; Laboratory of algebraic geometry and its applications, National Research University "Higher School of Economics" (HSE)
Email: akuznet@mi-ras.ru
Doctor of physico-mathematical sciences, no status
Yuri Prokhorov
Steklov Mathematical Institute of Russian Academy of Sciences; Lomonosov Moscow State University, Faculty of Mechanics and Mathematics; Laboratory of algebraic geometry and its applications, National Research University "Higher School of Economics" (HSE)
Email: prokhoro@mi-ras.ru
Doctor of physico-mathematical sciences, Professor
参考
- V. A. Iskovskih, “Fano 3-folds. I”, Izv. Akad. Nauk SSSR Ser. Mat., 41:3 (1977), 516–562
- T. Fujita, “On the structure of polarized manifolds with total deficiency one. I”, J. Math. Soc. Japan, 32:4 (1980), 709–725
- P. Jahnke, T. Peternell, “Almost del Pezzo manifolds”, Adv. Geom., 8:3 (2008), 387–411
- M. Andreatta, L. Tasin, “Fano–Mori contractions of high length on projective varieties with terminal singularities”, Bull. Lond. Math. Soc., 46:1 (2014), 185–196
- Yu. Prokhorov, “$G$-Fano threefolds. I”, Adv. Geom., 13:3 (2013), 389–418
- A. Kuznetsov, “Homological projective duality”, Publ. Math. Inst. Hautes Etudes Sci., 105 (2007), 157–220
- T. Beckmann, P. Belmans, Homological projective duality for the Segre cubic (to appear)
- H. Ahmadinezhad, I. Cheltsov, J. Park, C. Shramov, Double Veronese cones with $28$ nodes (to appear)
- Kil-Ho Shin, “$3$-dimensional Fano varieties with canonical singularities”, Tokyo J. Math., 12:2 (1989), 375–385
- T. Fujita, “Projective varieties of $Delta$-genus one”, Algebraic and topological theories (Kinosaki, 1984), Kinokuniya, Tokyo, 1986, 149–175
- T. Fujita, “On singular del Pezzo varieties”, Algebraic geometry (L'Aquila, 1988), Lecture Notes in Math., 1417, Springer, Berlin, 1990, 117–128
- V. A. Alexeev, “Theorems about good divisors on log {F}ano varieties (case of index $r>n-2$)”, Algebraic geometry (Chicago, IL, 1989), Lecture Notes in Math., 1479, Springer, Berlin, 1991, 1–9
- F. Hidaka, K. Watanabe, “Normal Gorenstein surfaces with ample anti-canonical divisor”, Tokyo J. Math., 4:2 (1981), 319–330
- T. Fujita, “Defining equations for certain types of polarized varieties”, Complex analysis and algebraic geometry, Iwanami Shoten, Tokyo, 1977, 165–173
- J. Kollar, Sh. Mori, Birational geometry of algebraic varieties, With the collaboration of C. H. Clemens, A. Corti, Cambridge Tracts in Math., 134, Cambridge Univ. Press, Cambridge, 1998, viii+254 pp.
- I. V. Dolgachev, V. A. Iskovskikh, “Finite subgroups of the plane Cremona group”, Algebra, arithmetic, and geometry, In honor of Yu. I. Manin, v. I, Progr. Math., 269, Birkhäuser Boston, Boston, MA, 2009, 443–548
- Yu. G. Prokhorov, “On birational involutions of $mathbb P^3$”, Izv. Ross. Akad. Nauk Ser. Mat., 77:3 (2013), 199–222
- C. Birkar, P. Cascini, C. D. Hacon, J. McKernan, “Existence of minimal models for varieties of log general type”, J. Amer. Math. Soc., 23:2 (2010), 405–468
- Yu. G. Prokhorov, V. V. Shokurov, “Towards the second main theorem on complements”, J. Algebraic Geom., 18:1 (2009), 151–199
- Yi Hu, S. Keel, “Mori dream spaces and GIT”, Michigan Math. J., 48 (2000), 331–348
- S. Ishii, Introduction to singularities, Springer, Tokyo, 2014, viii+223 pp.
- E. Yasinsky, “Subgroups of odd order in the real plane Cremona group”, J. Algebra, 461 (2016), 87–120
- V. A. Iskovskikh, Yu. G. Prokhorov, “Fano varieties”, Algebraic geometry V, Encyclopaedia Math. Sci., 47, Springer, Berlin, 1999, 1–247
- R. Hartshorne, “Stable reflexive sheaves”, Math. Ann., 254:2 (1980), 121–176
- Y. Kawamata, K. Matsuda, K. Matsuki, “Introduction to the minimal model problem”, Algebraic geometry (Sendai, 1985), Adv. Stud. Pure Math., 10, North-Holland, Amsterdam, 1987, 283–360
- G. V. Ravindra, V. Srinivas, “The Grothendieck–Lefschetz theorem for normal projective varieties”, J. Algebraic Geom., 15:3 (2006), 563–590
- A. Kuznetsov, Derived categories of families of Fano threefolds
- C. Liedtke, “Morphisms to Brauer–Severi varieties, with applications to del Pezzo surfaces”, Geometry over nonclosed fields, Simons Symp., Springer, Cham, 2017, 157–196
- H. A. Hamm, Lê Dũng Trang, “Un theorème de Zariski du type de Lefschetz”, Ann. Sci. Ecole Norm. Sup. (4), 6:4 (1973), 317–355
- A. G. Kuznetsov, “On linear sections of the spinor tenfold. I”, Izv. Ross. Akad. Nauk Ser. Mat., 82:4 (2018), 53–114
- A. Kuznetsov, Yu. Prokhorov, “Rationality of Mukai varieties over non-closed fields”, Rationality of varieties, Progr. Math., 342, Birkhäuser/Springer, Cham, 2021, 249–290
- Yu. I. Manin, Cubic forms: algebra, geometry, arithmetic, Nauka, Moscow, 1972, 304 pp. (Russian)
- A. Kuznetsov, Yu. Prokhorov, “Rationality over non-closed fields of Fano threefolds with higher geometric Picard rank”, J. Inst. Math. Jussieu, published online by Cambridge University Press 05/AUG/2022
- O. Debarre, A. Kuznetsov, “Gushel–Mukai varieties: classification and birationalities”, Algebr. Geom., 5:1 (2018), 15–76
- A. Kuznetsov, Yu. Prokhorov, “Rationality of Fano threefolds over non-closed fields”, Amer. J. Math., 145:2 (2023), 335–411
- J. Piontkowski, A. Van de Ven, “The automorphism group of linear sections of the Grassmannians $mathbb{G}(1,N)$”, Doc. Math., 4 (1999), 623–664
- J. G. Semple, L. Roth, Introduction to algebraic geometry, Oxford Sci. Publ., Reprint of the 1949 original, The Clarendon Press, Oxford Univ. Press, New York, 1985, xviii+454 pp.
- H. F. Baker, “Segre's ten nodal cubic primal in space of four dimensions and del Pezzo's surface in five dimensions”, J. London Math. Soc., 6:3 (1931), 176–185
- I. V. Dolgachev, Classical algebraic geometry. A modern view, Cambridge Univ. Press, Cambridge, 2012, xii+639 pp.
- B. Hunt, The geometry of some special arithmetic quotients, Lecture Notes in Math., 1637, Springer-Verlag, Berlin, 1996, xiv+332 pp.
- I. Cheltsov, A. Kuznetsov, K. Shramov, “Coble fourfold, {$mathfrak{S}_6$}-invariant quartic threefolds, and Wiman–Edge sextics”, Algebra Number Theory, 14:1 (2020), 213–274
补充文件
