Эволюционные силовые биллиарды

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Введен новый класс интегрируемых биллиардов, названный эволюционными силовыми биллиардами. Они зависят от параметра и меняют свою топологию с ростом энергии (времени). Доказано, что они реализуют некоторые важные интегрируемые системы с двумя степенями свободы сразу на всем симплектическом четырехмерном фазовом многообразии, а не только на отдельных изоэнергетических $3$-поверхностях. Таковы, например, случай Эйлера и случай Лагранжа. Доказано также, что эти две известные системы “биллиардно эквивалентны”, несмотря на то, что первая из них квадратично интегрируема, а вторая допускает линейный интеграл.Библиография: 74 наименования.

Об авторах

Анатолий Тимофеевич Фоменко

Московский государственный университет имени М. В. Ломоносова, механико-математический факультет

Email: fomenko@mech.math.msu.su
доктор физико-математических наук, профессор

Виктория Викторовна Ведюшкина

Московский государственный университет имени М. В. Ломоносова, механико-математический факультет

Email: arinir@yandex.ru
доктор физико-математических наук

Список литературы

  1. S. Smale, “Topology and mechanics. I”, Invent. Math., 10:4 (1970), 305–331
  2. А. Т. Фоменко, “Теория Морса интегрируемых гамильтоновых систем”, Докл. АН СССР, 287:5 (1986), 1071–1075
  3. А. Т. Фоменко, “Топология поверхностей постоянной энергии некоторых интегрируемых гамильтоновых систем и препятствия к интегрируемости”, Изв. АН СССР. Сер. матем., 50:6 (1986), 1276–1307
  4. А. Т. Фоменко, Х. Цишанг, “О топологии трехмерных многообразий, возникающих в гамильтоновой механике”, Докл. АН СССР, 294:2 (1987), 283–287
  5. А. Т. Фоменко, Х. Цишанг, “О типичных топологических свойствах интегрируемых гамильтоновых систем”, Изв. АН СССР. Сер. матем., 52:2 (1988), 378–407
  6. А. Т. Фоменко, Х. Цишанг, “Топологический инвариант и критерий эквивалентности интегрируемых гамильтоновых систем с двумя степенями свободы”, Изв. АН СССР. Сер. матем., 54:3 (1990), 546–575
  7. А. В. Болсинов, А. Т. Фоменко, Интегрируемые гамильтоновы системы. Геометрия, топология, классификация, т. 1, 2, Изд. дом “Удмуртский университет”, Ижевск, 1999, 444 с., 447 с.
  8. В. В. Фокичева, “Топологическая классификация биллиардов в локально плоских областях, ограниченных дугами софокусных квадрик”, Матем. сб., 206:10 (2015), 127–176
  9. В. В. Фокичева, А. Т. Фоменко, “Интегрируемые биллиарды моделируют важные интегрируемые случаи динамики твердого тела”, Докл. РАН, 465:2 (2015), 150–153
  10. V. V. Fokicheva, A. T. Fomenko, “Billiard systems as the models for the rigid body dynamics”, Advances in dynamical systems and control, Stud. Syst. Decis. Control, 69, Springer, Cham, 2016, 13–33
  11. В. В. Ведюшкина (Фокичева), А. Т. Фоменко, “Интегрируемые топологические биллиарды и эквивалентные динамические системы”, Изв. РАН. Сер. матем., 81:4 (2017), 20–67
  12. В. В. Ведюшкина, А. Т. Фоменко, “Понижение степени интегралов гамильтоновых систем с помощью биллиардов”, Докл. РАН, 486:2 (2019), 151–155
  13. В. В. Ведюшкина, “Инварианты Фоменко–Цишанга невыпуклых топологических биллиардов”, Матем. сб., 210:3 (2019), 17–74
  14. В. В. Ведюшкина, “Слоение Лиувилля невыпуклых топологических биллиардов”, Докл. РАН, 478:1 (2018), 7–11
  15. В. В. Ведюшкина, А. Т. Фоменко, И. С. Харчева, “Моделирование невырожденных бифуркаций замыканий решений интегрируемых систем с двумя степенями свободы интегрируемыми топологическими биллиардами”, Докл. РАН, 479:6 (2018), 607–610
  16. В. В. Ведюшкина, И. С. Харчева, “Биллиардные книжки моделируют все трехмерные бифуркации интегрируемых гамильтоновых систем”, Матем. сб., 209:12 (2018), 17–56
  17. A. A. Oshemkov, “Fomenko invariants for the main integrable cases of the rigid body motion equations”, Topological classification of integrable systems, Adv. Soviet Math., 6, Amer. Math. Soc., Providence, RI, 1991, 67–146
  18. А. В. Болсинов, П. Х. Рихтер, А. Т. Фоменко, “Метод круговых молекул и топология волчка Ковалевской”, Матем. сб., 191:2 (2000), 3–42
  19. П. В. Морозов, “Лиувиллева классификация интегрируемых систем случая Клебша”, Матем. сб., 193:10 (2002), 113–138
  20. П. В. Морозов, “Топология слоений Лиувилля случаев интегрируемости Стеклова и Соколова уравнений Кирхгофа”, Матем. сб., 195:3 (2004), 69–114
  21. П. В. Морозов, “Вычисление инвариантов Фоменко–Цишанга в интегрируемом случае Ковалевской–Яхьи”, Матем. сб., 198:8 (2007), 59–82
  22. Н. С. Славина, “Топологическая классификация систем типа Ковалевской–Яхьи”, Матем. сб., 205:1 (2014), 105–160
  23. В. А. Кибкало, “Топология аналога случая интегрируемости Ковалевской на алгебре Ли $operatorname{so}(4)$ при нулевой постоянной площадей”, Вестн. Моск. ун-та. Сер. 1. Матем., мех., 2016, № 3, 46–50
  24. V. Kibkalo, “Topological analysis of the Liouville foliation for the Kovalevskaya integrable case on the Lie algebra $operatorname{so}(4)$”, Lobachevskii J. Math., 39:9 (2018), 1396–1399
  25. В. А. Кибкало, “Топологическая классификация слоений Лиувилля для интегрируемого случая Ковалевской на алгебре Ли $operatorname{so}(4)$”, Матем. сб., 210:5 (2019), 3–40
  26. V. Kibkalo, “Topological classification of Liouville foliations for the Kovalevskaya integrable case on the Lie algebra $operatorname{so}(3, 1)$”, Topology Appl., 275 (2020), 107028, 10 pp.
  27. Д. А. Федосеев, А. Т. Фоменко, “Некомпактные особенности интегрируемых динамических систем”, Фундамент. и прикл. матем., 21:6 (2016), 217–243
  28. S. S. Nikolaenko, “Topological classification of the Goryachev integrable systems in the rigid body dynamics: non-compact case”, Lobachevskii J. Math., 38:6 (2017), 1050–1060
  29. В. А. Кибкало, “Свойство некомпактности слоев и особенностей неевклидовой системы Ковалевской на пучке алгебр Ли”, Вестн. Моск. ун-та. Сер. 1. Матем., мех., 6 (2020), 56–59
  30. Е. А. Кудрявцева, “Аналог теоремы Лиувилля для интегрируемых гамильтоновых систем с неполными потоками”, Докл. РАН, 445:4 (2012), 383–385
  31. Нгуен Тьен Зунг, Л. С. Полякова, Е. Н. Селиванова, “Топологическая классификация интегрируемых геодезических потоков с дополнительным квадратичным или линейным по импульсам интегралом на двумерных ориентируемых римановых многообразиях”, Функц. анализ и его прил., 27:3 (1993), 42–56
  32. Е. Н. Селиванова, “Классификация геодезических потоков лиувиллевых метрик на двумерном торе с точностью до топологической эквивалентности”, Матем. сб., 183:4 (1992), 69–86
  33. В. В. Калашников, “Топологическая классификация квадратично-интегрируемых геодезических потоков на двумерном торе”, УМН, 50:1(301) (1995), 201–202
  34. В. В. Ведюшкина (Фокичева), А. Т. Фоменко, “Интегрируемые геодезические потоки на ориентируемых двумерных поверхностях и топологические биллиарды”, Изв. РАН. Сер. матем., 83:6 (2019), 63–103
  35. Е. О. Кантонистова, “Топологическая классификация интегрируемых гамильтоновых систем на поверхностях вращения в потенциальном поле”, Матем. сб., 207:3 (2016), 47–92
  36. Д. С. Тимонина, “Лиувиллева классификация интегрируемых геодезических потоков на торе вращения в потенциальном поле”, Вестн. Моск. ун-та. Сер. 1. Матем., мех., 2017, № 3, 35–43
  37. Е. А. Кудрявцева, А. А. Ошемков, “Бифуркации интегрируемых механических систем с магнитным полем на поверхностях вращения”, Чебышевский сб., 21:2 (2020), 244–265
  38. А. Т. Фоменко, В. В. Ведюшкина, “Бильярды и интегрируемость в геометрии и физике. Новый взгляд и новые возможности”, Вестн. Моск. ун-та. Сер. 1. Матем., мех., 2019, № 3, 15–25
  39. В. В. Ведюшкина, И. С. Харчева, “Биллиардные книжки реализуют все базы слоений Лиувилля интегрируемых гамильтоновых систем”, Матем. сб., 212:8 (2021), 89–150
  40. В. В. Ведюшкина, В. А. Кибкало, А. Т. Фоменко, “Топологическое моделирование интегрируемых систем биллиардами: реализация числовых инвариантов”, Докл. РАН. Матем., информ., проц. упр., 493 (2020), 9–12
  41. В. В. Ведюшкина, В. А. Кибкало, “Реализация бильярдами числового инварианта расслоения Зейферта интегрируемых систем”, Вестн. Моск. ун-та. Сер. 1. Матем., мех., 2020, № 4, 22–28
  42. В. В. Ведюшкина, “Интегрируемые биллиарды реализуют торические слоения на линзовых пространствах и 3-торе”, Матем. сб., 211:2 (2020), 46–73
  43. F. Waldhausen, “Eine Klasse von 3-dimensionalen Mannigfaltighkeiten. I”, Invent. Math., 3:4 (1967), 308–333
  44. F. Waldhausen, “Eine Klasse von 3-dimensionalen Mannigfaltighkeiten. II”, Invent. Math., 4:2 (1967), 88–117
  45. В. В. Ведюшкина, “Слоение Лиувилля бильярдной книжки, моделирующей случай Горячева–Чаплыгина”, Вестн. Моск. ун-та. Сер. 1. Матем., мех., 2020, № 1, 64–68
  46. A. T. Fomenko, V. V. Vedyushkina, “Implementation of integrable systems by topological, geodesic billiards with potential and magnetic field”, Russ. J. Math. Phys., 26:3 (2019), 320–333
  47. Е. Е. Каргинова, “Биллиарды, ограниченные дугами софокусных квадрик на плоскости Минковского”, Матем. сб., 211:1 (2020), 3–31
  48. И. Ф. Кобцев, “Эллиптический биллиард в поле потенциальных сил: классификация движений, топологический анализ”, Матем. сб., 211:7 (2020), 93–120
  49. С. Е. Пустовойтов, “Топологический анализ биллиарда в эллиптическом кольце в потенциальном поле”, Фундамент. и прикл. матем., 22:6 (2019), 201–225
  50. С. Е. Пустовойтов, “Топологический анализ биллиарда, ограниченного софокусными квадриками, в потенциальном поле”, Матем. сб., 212:2 (2021), 81–105
  51. Г. В. Белозеров, “Топологическая классификация интегрируемых геодезических биллиардов на квадриках в трeхмерном евклидовом пространстве”, Матем. сб., 211:11 (2020), 3–40
  52. И. Ф. Кобцев, “Геодезический поток двумерного эллипсоида в поле упругой силы: топологическая классификация решений”, Вестн. Моск. ун-та. Сер. 1. Матем., мех., 2018, № 2, 27–33
  53. В. В. Козлов, Д. В. Трещeв, Биллиарды. Генетическое введение в динамику систем с ударами, Изд-во Моск. ун-та, М., 1991, 168 с.
  54. С. Табачников, Геометрия и биллиарды, НИЦ “Регулярная и хаотическая динамика”, Ин-т компьютерных исследований, М.–Ижевск, 2011, 180 с.
  55. В. Драгович, М. Раднович, Интегрируемые биллиарды, квадрики и многомерные поризмы Понселе, НИЦ “Регулярная и хаотическая динамика”, М.–Ижевск, 2010, 338 с.
  56. А. А. Глуцюк, “О двумерных полиномиально интегрируемых бильярдах на поверхностях постоянной кривизны”, Докл. РАН, 481:6 (2018), 594–598
  57. M. Bialy, A. E. Mironov, “Angular billiard and algebraic Birkhoff conjecture”, Adv. Math., 313 (2017), 102–126
  58. M. Bialy, A. E. Mironov, “Algebraic non-integrability of magnetic billiards”, J. Phys. A, 49:45 (2016), 455101, 18 pp.
  59. М. Бялый, А. Е. Миронов, “Полиномиальная неинтегрируемость магнитных бильярдов на сфере и гиперболической плоскости”, УМН, 74:2(446) (2019), 3–26
  60. A. Avila, J. De Simoi, V. Kaloshin, “An integrable deformation of an ellipse of small eccentricity is an ellipse”, Ann. of Math. (2), 184:2 (2016), 527–558
  61. V. Kaloshin, A. Sorrentino, “On the local Birkhoff conjecture for convex billiards”, Ann. of Math. (2), 188:1 (2018), 315–380
  62. Nguyen Tien Zung, “Symplectic topology of integrable Hamiltonian systems. II. Topological classification”, Compositio Math., 138:2 (2003), 125–156
  63. Nguyen Tien Zung, “Symplectic topology of integrable Hamiltonian systems. I. Arnold–Liouville with singularities”, Compositio Math., 101:2 (1996), 179–215
  64. A. Bolsinov, L. Guglielmi, E. Kudryavtseva, “Symplectic invariants for parabolic orbits and cusp singularities of integrable systems”, Philos. Trans. Roy. Soc. A, 376:2131 (2018), 20170424, 29 pp.
  65. E. A. Kudryavtseva, N. N. Martynchuk, “Existence of a smooth Hamiltonian circle action near parabolic orbits and cuspidal tori”, Regul. Chaotic Dyn., 26:6 (2021), 732–741
  66. В. В. Калашников, “Типичные интегрируемые гамильтоновы системы на четырехмерном симплектическом многообразии”, Изв. РАН. Сер. матем., 62:2 (1998), 49–74
  67. E. A. Kudryavtseva, “Hidden toric symmetry and structural stability of singularities in integrable systems”, Eur. J. Math., 2021, 1–63, Publ. online
  68. A. V. Bolsinov, A. A. Oshemkov, “Singularities of integrable Hamiltonian systems”, Topological methods in the theory of integrable systems, Camb. Sci. Publ., Cambridge, 2006, 1–67
  69. А. А. Ошемков, М. А. Тужилин, “Интегрируемые возмущения седловых особенностей ранга 0 интегрируемых гамильтоновых систем”, Матем. сб., 209:9 (2018), 102–127
  70. A. Bolsinov, A. Izosimov, “Smooth invariants of focus-focus singularities and obstructions to product decomposition”, J. Symplectic Geom., 17:6 (2019), 1613–1648
  71. И. К. Козлов, А. А. Ошемков, “Классификация особенностей типа седло-фокус”, Чебышевский сб., 21:2 (2020), 228–243
  72. С. С. Николаенко, “Топологическая классификация гамильтоновых систем на двумерных некомпактных многообразиях”, Матем. сб., 211:8 (2020), 68–101
  73. A. T. Fomenko, V. A. Kibkalo, “Saddle singularities in integrable Hamiltonian systems: examples and algorithms”, Contemporary approaches and methods in fundamental mathematics and mechanics, Underst. Complex Syst., Springer, Cham, 2021, 3–26
  74. И. С. Харчева, “Изоэнергетические многообразия интегрируемых бильярдных книжек”, Вестн. Моск. ун-та. Сер. 1. Матем., мех., 2020, № 4, 12–22

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Фоменко А.Т., Ведюшкина В.В., 2022

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».