On the nonsymplectic involutions of the Hilbert square of a K3 surface
- 作者: Boissière S.1, Cattaneo A.2, Markushevich D.G.3, Sarti A.1
-
隶属关系:
- Université de Poitiers
- Institut Camille Jordan, Université Claude Bernard Lyon 1
- Université de Lille
- 期: 卷 83, 编号 4 (2019)
- 页面: 86-99
- 栏目: Articles
- URL: https://bakhtiniada.ru/1607-0046/article/view/133784
- DOI: https://doi.org/10.4213/im8823
- ID: 133784
如何引用文章
详细
作者简介
Samuel Boissière
Université de Poitiers
Email: samuel.boissiere@math.univ-poitiers.fr
Andrea Cattaneo
Institut Camille Jordan, Université Claude Bernard Lyon 1
Email: cattaneo@math.univ-lyon1.fr
Dmitri Markushevich
Université de Lille
Alessandra Sarti
Université de Poitiers
Email: sarti@math.univ-poitiers.fr
参考
- B. Saint-Donat, “Projective models of $K-3$ surfaces”, Amer. J. Math., 96:4 (1974), 602–639
- A. Beauville, “Some remarks on Kähler manifolds with $c_{1}=0$”, Classification of algebraic and analytic manifolds (Katata, 1982), Progr. Math., 39, Birkhäuser Boston, Boston, MA, 1983, 1–26
- A. Beauville, “Varietes Kähleriennes dont la première classe de Chern est nulle”, J. Differential Geom., 18:4 (1983), 755–782
- V. Gritsenko, K. Hulek, G. K. Sankaran, “Moduli spaces of irreducible symplectic manifolds”, Compos. Math., 146:2 (2010), 404–434
- O. Debarre, E. Macrì, “On the period map for polarized hyperkähler fourfolds”, Int. Math. Res. Not. IMRN, 2018, rnx333, 37 pp.
- S. Boissiere, A. Cattaneo, M. Nieper-Wisskirchen, A. Sarti, “The automorphism group of the Hilbert scheme of two points on a generic projective K3 surface”, K3 surfaces and their moduli, Progr. Math., 315, Birkhäuser/Springer, Cham, 2016, 1–15
- E. Markman, “A survey of Torelli and monodromy results for holomorphic-symplectic varieties”, Complex and differential geometry, Springer Proc. Math., 8, Springer, Heidelberg, 2011, 257–322
- A. Beauville, “Antisymplectic involutions of holomorphic symplectic manifolds”, J. Topol., 4:2 (2011), 300–304
- K. G. O'Grady, “Involutions and linear systems on holomorphic symplectic manifolds”, Geom. Funct. Anal., 15:6 (2005), 1223–1274
- E. Markman, “Integral constraints on the monodromy group of the hyperKähler resolution of a symmetric product of a $K3$ surface”, Internat. J. Math., 21:2 (2010), 169–223
- E. Markman, “On the monodromy of moduli spaces of sheaves on $K3$ surfaces”, J. Algebraic Geom., 17:1 (2008), 29–99
- G. Mongardi, “On natural deformations of symplectic automorphisms of manifolds of $K3^{[n]}$ type”, C. R. Math. Acad. Sci. Paris, 351:13-14 (2013), 561–564
- S. Boissière, C. Camere, A. Sarti, “Classification of automorphisms on a deformation family of hyper-Kähler four-folds by $p$-elementary lattices”, Kyoto J. Math., 56:3 (2016), 465–499
- A. Cattaneo, Automorphisms of Hilbert schemes of points on a generic projective K3 surface, 2018
- C. Camere, G. Kapustka, M. Kapustka, G. Mongardi, “Verra four-folds, twisted sheaves, and the last involution”, Int. Math. Res. Not. IMRN, 2018, rnx327, 50 pp.
- V. Gritsenko, K. Hulek, G. K. Sankaran, “Moduli of K3 surfaces and irreducible symplectic manifolds”, Handbook of moduli, v. 1, Adv. Lect. Math. (ALM), 24, Int. Press, Somerville, MA, 2013, 459–526
- S. Boissière, C. Camere, A. Sarti, “Complex ball quotients from manifolds of $K3^{[n]}$-type”, J. Pure Appl. Algebra, 223:3 (2019), 1123–1138
- K. G. O'Grady, “Double covers of EPW-sextics”, Michigan Math. J., 62:1 (2013), 143–184
- D. Eisenbud, S. Popescu, C. Walter, “Lagrangian subbundles and codimension 3 subcanonical subschemes”, Duke Math. J., 107:3 (2001), 427–467
- K. G. O'Grady, “Irreducible symplectic 4-folds and Eisenbud–Popescu–Walter sextics”, Duke Math. J., 134:1 (2006), 99–137
- M. Joumaah, “Non-symplectic involutions of irreducible symplectic manifolds of $K3^{[n]}$-type”, Math. Z., 283:3-4 (2016), 761–790
- A. Ferretti, “The Chow ring of double EPW sextics”, Algebra Number Theory, 6:3 (2012), 539–560
- D. R. Morrison, “On K3 surfaces with large Picard number”, Invent. Math., 75:1 (1984), 105–121
- D. Huybrechts, Lectures on K3 surfaces, Cambridge Stud. Adv. Math., 158, Cambridge Univ. Press, Cambridge, 2016, xi+485 pp.
- M. Reid, “Chapters on algebraic surfaces”, Complex algebraic geometry (Park City, UT, 1993), IAS/Park City Math. Ser., 3, Amer. Math. Soc., Providence, RI, 1997, 3–159
- K. Oguiso, “Isomorphic quartic $K3$ surfaces in the view of Cremona and projective transformations”, Taiwanese J. Math., 21:3 (2017), 671–688
- D. Huybrechts, “Compact hyperkähler manifolds: basic results”, Invent. Math., 135:1 (1999), 63–113
- G. Bini, “On automorphisms of some K3 surfaces with Picard number two”, Annals of the Marie Curie Fellowship Association, 4 (2005), 1–3
- A. Garbagnati, A. Sarti, “Kummer surfaces and K3 surfaces with $(mathbb{Z}/2mathbb{Z})^4$ symplectic action”, Rocky Mountain J. Math., 46:4 (2016), 1141–1205
补充文件
