Shifted Darboux Transformations of the Generalized Jacobi Matrices, I


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Let ℑ be a monic generalized Jacobi matrix, i.e., a three-diagonal block matrix of a special form. We find conditions for a monic generalized Jacobi matrix ℑ to admit a factorization ℑ = ???????? + αI with ???? and ???? being lower and upper triangular two-diagonal block matrices of special forms. In this case, the shifted parameterless Darboux transformation of ℑ defined by ℑ(p) = ???????? + αI is shown to be also a monic generalized Jacobi matrix. Analogs of the Christoffel formulas for polynomials of the first and second kinds corresponding to the Darboux transformation ℑ(p) are found.

作者简介

Ivan Kovalyov

Dragomanov National Pedagogical University

编辑信件的主要联系方式.
Email: i.m.kovalyov@gmail.com
乌克兰, Kiev

补充文件

附件文件
动作
1. JATS XML

版权所有 © Springer Science+Business Media, LLC, part of Springer Nature, 2019