Shifted Darboux Transformations of the Generalized Jacobi Matrices, I
- 作者: Kovalyov I.M.1
-
隶属关系:
- Dragomanov National Pedagogical University
- 期: 卷 242, 编号 3 (2019)
- 页面: 393-412
- 栏目: Article
- URL: https://bakhtiniada.ru/1072-3374/article/view/242985
- DOI: https://doi.org/10.1007/s10958-019-04485-6
- ID: 242985
如何引用文章
详细
Let ℑ be a monic generalized Jacobi matrix, i.e., a three-diagonal block matrix of a special form. We find conditions for a monic generalized Jacobi matrix ℑ to admit a factorization ℑ = ???????? + αI with ???? and ???? being lower and upper triangular two-diagonal block matrices of special forms. In this case, the shifted parameterless Darboux transformation of ℑ defined by ℑ(p) = ???????? + αI is shown to be also a monic generalized Jacobi matrix. Analogs of the Christoffel formulas for polynomials of the first and second kinds corresponding to the Darboux transformation ℑ(p) are found.
作者简介
Ivan Kovalyov
Dragomanov National Pedagogical University
编辑信件的主要联系方式.
Email: i.m.kovalyov@gmail.com
乌克兰, Kiev
补充文件
