Shifted Darboux Transformations of the Generalized Jacobi Matrices, I
- Autores: Kovalyov I.M.1
-
Afiliações:
- Dragomanov National Pedagogical University
- Edição: Volume 242, Nº 3 (2019)
- Páginas: 393-412
- Seção: Article
- URL: https://bakhtiniada.ru/1072-3374/article/view/242985
- DOI: https://doi.org/10.1007/s10958-019-04485-6
- ID: 242985
Citar
Resumo
Let ℑ be a monic generalized Jacobi matrix, i.e., a three-diagonal block matrix of a special form. We find conditions for a monic generalized Jacobi matrix ℑ to admit a factorization ℑ = ???????? + αI with ???? and ???? being lower and upper triangular two-diagonal block matrices of special forms. In this case, the shifted parameterless Darboux transformation of ℑ defined by ℑ(p) = ???????? + αI is shown to be also a monic generalized Jacobi matrix. Analogs of the Christoffel formulas for polynomials of the first and second kinds corresponding to the Darboux transformation ℑ(p) are found.
Sobre autores
Ivan Kovalyov
Dragomanov National Pedagogical University
Autor responsável pela correspondência
Email: i.m.kovalyov@gmail.com
Ucrânia, Kiev
Arquivos suplementares
