Subgroups of the General Linear Group That Contain Elementary Subgroup Over a Rank 2 Commutative Ring Extension


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Let R = \( \prod \limits_{i\in I}{F}_i \) be the direct product of fields, and let\( S=R\left[\sqrt{d}\right]=\prod \limits_{i\in I}{F}_i\left[\sqrt{d_i}\right] \) be a rank 2 extension of R. The subgroups of the general linear group GL(2n,R), n ≥ 3, that contain the elementary group E (n, S) are described. It is shown that for every such a subgroup H there exists a unique ideal A ⊴ R such that E (n, S)E(2n,R,A) ≤ H ≤ NGL(2n,R) (E (n, S)E(2n,R,A)).

作者简介

T. Hoi

University of Science, VNU-HCM

编辑信件的主要联系方式.
Email: tnhoi@hcmus.edu.vn
越南, Ho Chi Minh City

N. Nhat

University of Science, VNU-HCM

Email: tnhoi@hcmus.edu.vn
越南, Ho Chi Minh City

补充文件

附件文件
动作
1. JATS XML

版权所有 © Springer Science+Business Media, LLC, part of Springer Nature, 2018