Subgroups of the General Linear Group That Contain Elementary Subgroup Over a Rank 2 Commutative Ring Extension


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

Let R = \( \prod \limits_{i\in I}{F}_i \) be the direct product of fields, and let\( S=R\left[\sqrt{d}\right]=\prod \limits_{i\in I}{F}_i\left[\sqrt{d_i}\right] \) be a rank 2 extension of R. The subgroups of the general linear group GL(2n,R), n ≥ 3, that contain the elementary group E (n, S) are described. It is shown that for every such a subgroup H there exists a unique ideal A ⊴ R such that E (n, S)E(2n,R,A) ≤ H ≤ NGL(2n,R) (E (n, S)E(2n,R,A)).

Авторлар туралы

T. Hoi

University of Science, VNU-HCM

Хат алмасуға жауапты Автор.
Email: tnhoi@hcmus.edu.vn
Вьетнам, Ho Chi Minh City

N. Nhat

University of Science, VNU-HCM

Email: tnhoi@hcmus.edu.vn
Вьетнам, Ho Chi Minh City

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Springer Science+Business Media, LLC, part of Springer Nature, 2018