Homogenization of a Singular Perturbation Problem
- 作者: Kim S.1, Shahgholian H.2
-
隶属关系:
- Seoul National University
- Royal Institute of Technology
- 期: 卷 242, 编号 1 (2019)
- 页面: 163-176
- 栏目: Article
- URL: https://bakhtiniada.ru/1072-3374/article/view/242964
- DOI: https://doi.org/10.1007/s10958-019-04472-x
- ID: 242964
如何引用文章
详细
We discuss homogenization of the singular perturbation problem
with a constant boundary value on the ball. Here, Δp is the usual p-Laplacian operator. It is generally understood that the two parameters δ and ε are in competition and two different behaviors may be exhibited, depending on which parameter tends to zero faster. We consider one scenario where we assume that ε, the homogenization parameter, tends to zero faster than δ, the singular perturbation parameter. We show that there is a universal speed for which the limit solves a standard Bernoulli free boundary problem.
作者简介
S. Kim
Seoul National University
Email: henriksh@kth.se
韩国, Seoul, 08826
H. Shahgholian
Royal Institute of Technology
编辑信件的主要联系方式.
Email: henriksh@kth.se
瑞典, Stockholm, 100 44
补充文件
