Homogenization of a Singular Perturbation Problem


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

We discuss homogenization of the singular perturbation problem

\( {\Delta}_p{u}_{\delta}^{\varepsilon }={f}^{\varepsilon }{\beta}_{\delta}\left({u}_{\delta}^{\varepsilon}\right)\kern1em in\kern0.5em {\mathrm{\mathbb{R}}}^n\backslash \overline{B_1} \)

with a constant boundary value on the ball. Here, Δp is the usual p-Laplacian operator. It is generally understood that the two parameters δ and ε are in competition and two different behaviors may be exhibited, depending on which parameter tends to zero faster. We consider one scenario where we assume that ε, the homogenization parameter, tends to zero faster than δ, the singular perturbation parameter. We show that there is a universal speed for which the limit solves a standard Bernoulli free boundary problem.

作者简介

S. Kim

Seoul National University

Email: henriksh@kth.se
韩国, Seoul, 08826

H. Shahgholian

Royal Institute of Technology

编辑信件的主要联系方式.
Email: henriksh@kth.se
瑞典, Stockholm, 100 44

补充文件

附件文件
动作
1. JATS XML

版权所有 © Springer Science+Business Media, LLC, part of Springer Nature, 2019