Homogenization of a Singular Perturbation Problem


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

We discuss homogenization of the singular perturbation problem

\( {\Delta}_p{u}_{\delta}^{\varepsilon }={f}^{\varepsilon }{\beta}_{\delta}\left({u}_{\delta}^{\varepsilon}\right)\kern1em in\kern0.5em {\mathrm{\mathbb{R}}}^n\backslash \overline{B_1} \)

with a constant boundary value on the ball. Here, Δp is the usual p-Laplacian operator. It is generally understood that the two parameters δ and ε are in competition and two different behaviors may be exhibited, depending on which parameter tends to zero faster. We consider one scenario where we assume that ε, the homogenization parameter, tends to zero faster than δ, the singular perturbation parameter. We show that there is a universal speed for which the limit solves a standard Bernoulli free boundary problem.

Sobre autores

S. Kim

Seoul National University

Email: henriksh@kth.se
República da Coreia, Seoul, 08826

H. Shahgholian

Royal Institute of Technology

Autor responsável pela correspondência
Email: henriksh@kth.se
Suécia, Stockholm, 100 44

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Springer Science+Business Media, LLC, part of Springer Nature, 2019