On the Localization Conditions for the Spectrum of a Non-Self-Adjoint Sturm–Liouville Operator with Slowly Growing Potential


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

We consider the Sturm–Liouville operator T0 on the semi-axis (0,+) with the potential eq, where 0 < θ < π and q is a real-valued function that may have arbitrarily slow growth at infinity. This operator does not meet any condition of the Keldysh theorem: T0 is non-self-adjoint and its resolvent does not belong to the Neumann–Schatten class for any p < ∞. We find conditions for q and perturbations of V under which the localization or the asymptotics of its spectrum is preserved.

作者简介

L. Valiullina

Bashkir State University

编辑信件的主要联系方式.
Email: l.matem2012@yandex.ru
俄罗斯联邦, Ufa

Kh. Ishkin

Bashkir State University

Email: l.matem2012@yandex.ru
俄罗斯联邦, Ufa

补充文件

附件文件
动作
1. JATS XML

版权所有 © Springer Science+Business Media, LLC, part of Springer Nature, 2019