On the Localization Conditions for the Spectrum of a Non-Self-Adjoint Sturm–Liouville Operator with Slowly Growing Potential
- 作者: Valiullina L.G.1, Ishkin K.K.1
-
隶属关系:
- Bashkir State University
- 期: 卷 241, 编号 5 (2019)
- 页面: 556-569
- 栏目: Article
- URL: https://bakhtiniada.ru/1072-3374/article/view/242918
- DOI: https://doi.org/10.1007/s10958-019-04445-0
- ID: 242918
如何引用文章
详细
We consider the Sturm–Liouville operator T0 on the semi-axis (0,+∞) with the potential eiθq, where 0 < θ < π and q is a real-valued function that may have arbitrarily slow growth at infinity. This operator does not meet any condition of the Keldysh theorem: T0 is non-self-adjoint and its resolvent does not belong to the Neumann–Schatten class for any p < ∞. We find conditions for q and perturbations of V under which the localization or the asymptotics of its spectrum is preserved.
作者简介
L. Valiullina
Bashkir State University
编辑信件的主要联系方式.
Email: l.matem2012@yandex.ru
俄罗斯联邦, Ufa
Kh. Ishkin
Bashkir State University
Email: l.matem2012@yandex.ru
俄罗斯联邦, Ufa
补充文件
