On the Localization Conditions for the Spectrum of a Non-Self-Adjoint Sturm–Liouville Operator with Slowly Growing Potential
- Авторлар: Valiullina L.G.1, Ishkin K.K.1
-
Мекемелер:
- Bashkir State University
- Шығарылым: Том 241, № 5 (2019)
- Беттер: 556-569
- Бөлім: Article
- URL: https://bakhtiniada.ru/1072-3374/article/view/242918
- DOI: https://doi.org/10.1007/s10958-019-04445-0
- ID: 242918
Дәйексөз келтіру
Аннотация
We consider the Sturm–Liouville operator T0 on the semi-axis (0,+∞) with the potential eiθq, where 0 < θ < π and q is a real-valued function that may have arbitrarily slow growth at infinity. This operator does not meet any condition of the Keldysh theorem: T0 is non-self-adjoint and its resolvent does not belong to the Neumann–Schatten class for any p < ∞. We find conditions for q and perturbations of V under which the localization or the asymptotics of its spectrum is preserved.
Авторлар туралы
L. Valiullina
Bashkir State University
Хат алмасуға жауапты Автор.
Email: l.matem2012@yandex.ru
Ресей, Ufa
Kh. Ishkin
Bashkir State University
Email: l.matem2012@yandex.ru
Ресей, Ufa
Қосымша файлдар
