Criteria for the Best Approximation by Simple Partial Fractions on Semi-Axis and Axis
- Autores: Komarov M.A.1
-
Afiliações:
- A. G. and N. G. Stoletov Vladimir State University
- Edição: Volume 235, Nº 2 (2018)
- Páginas: 168-181
- Seção: Article
- URL: https://bakhtiniada.ru/1072-3374/article/view/242083
- DOI: https://doi.org/10.1007/s10958-018-4066-8
- ID: 242083
Citar
Resumo
We study uniform approximation of real-valued functions f, f(∞) = 0, on ℝ+ and ℝ by real-valued simple partial fractions (the logarithmic derivatives of polynomials). We obtain a criterion for the best approximation on ℝ+ and ℝ in terms of the Chebyshev alternance. This criterion is similar to the known criterion on finite segments. For the problem of approximating odd functions on ℝ we construct an alternance criterion with a weakened condition on the poles of fractions. We present a criterion for the best approximation by simple partial fractions on ℝ+ and ℝ in terms of Kolmogorov. We prove analogs of the de la Vallee-Poussin alternation theorem.
Sobre autores
M. Komarov
A. G. and N. G. Stoletov Vladimir State University
Autor responsável pela correspondência
Email: kami9@yandex.ru
Rússia, 87, Gor’kogo St., Vladimir, 600000
Arquivos suplementares
