Criteria for the Best Approximation by Simple Partial Fractions on Semi-Axis and Axis


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

We study uniform approximation of real-valued functions f, f(∞) = 0, on ℝ+ and ℝ by real-valued simple partial fractions (the logarithmic derivatives of polynomials). We obtain a criterion for the best approximation on ℝ+ and ℝ in terms of the Chebyshev alternance. This criterion is similar to the known criterion on finite segments. For the problem of approximating odd functions on ℝ we construct an alternance criterion with a weakened condition on the poles of fractions. We present a criterion for the best approximation by simple partial fractions on ℝ+ and ℝ in terms of Kolmogorov. We prove analogs of the de la Vallee-Poussin alternation theorem.

Авторлар туралы

M. Komarov

A. G. and N. G. Stoletov Vladimir State University

Хат алмасуға жауапты Автор.
Email: kami9@yandex.ru
Ресей, 87, Gor’kogo St., Vladimir, 600000

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Springer Science+Business Media, LLC, part of Springer Nature, 2018