The Normalizer of the Elementary Linear Group of a Module Arising when the Base Ring is Extended


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Let S be a commutative ring with 1 and R a unital subring. Let M be a free S-module of rank n ≥ 3. In 1994, V. A. Koibaev described the normalizer of AutS(M) in the group AutR(M). In the present paper, it is proved that the normalizer of the elementary linear group E????(M) in AutR(M) coincides with that of AutS(M), namely, NAutR(M)(E????(M)) = Aut(S/R)⋉AutS(M). If S is free of rank m as an R-module, then NGL(mn,R)(E(n, S)) = Aut(S/R)⋉GL(n, S). Moreover, for any proper ideal A of R,

\( {N}_{GL\left( mn,R\right)}\left(E\left(n,S\right)E\left( mn,R,A\right)\right)={\rho}_A^{-1}\left({N}_{GL\left( mn,R/A\right)}\left(E\left(n,S/ SA\right)\right)\right). \)

作者简介

N. Nhat

Vietnam National University

编辑信件的主要联系方式.
Email: nhtnhat@hcmus.edu.vn
越南, Ho Chi Minh City

T. Hoi

Vietnam National University

编辑信件的主要联系方式.
Email: tnhoi@hcmus.edu.vn
越南, Ho Chi Minh City

补充文件

附件文件
动作
1. JATS XML

版权所有 © Springer Science+Business Media, LLC, part of Springer Nature, 2018