The Normalizer of the Elementary Linear Group of a Module Arising when the Base Ring is Extended


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

Let S be a commutative ring with 1 and R a unital subring. Let M be a free S-module of rank n ≥ 3. In 1994, V. A. Koibaev described the normalizer of AutS(M) in the group AutR(M). In the present paper, it is proved that the normalizer of the elementary linear group E????(M) in AutR(M) coincides with that of AutS(M), namely, NAutR(M)(E????(M)) = Aut(S/R)⋉AutS(M). If S is free of rank m as an R-module, then NGL(mn,R)(E(n, S)) = Aut(S/R)⋉GL(n, S). Moreover, for any proper ideal A of R,

\( {N}_{GL\left( mn,R\right)}\left(E\left(n,S\right)E\left( mn,R,A\right)\right)={\rho}_A^{-1}\left({N}_{GL\left( mn,R/A\right)}\left(E\left(n,S/ SA\right)\right)\right). \)

Авторлар туралы

N. Nhat

Vietnam National University

Хат алмасуға жауапты Автор.
Email: nhtnhat@hcmus.edu.vn
Вьетнам, Ho Chi Minh City

T. Hoi

Vietnam National University

Хат алмасуға жауапты Автор.
Email: tnhoi@hcmus.edu.vn
Вьетнам, Ho Chi Minh City

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Springer Science+Business Media, LLC, part of Springer Nature, 2018