Открытый доступ Открытый доступ  Доступ закрыт Доступ предоставлен  Доступ закрыт Только для подписчиков

Том 44, № 8 (2019)

Article

Thermal Regime of the Troposphere, Stratosphere, and Lower Mesosphere in the Northern Hemisphere in 1979–2016

Perevedentsev Y., Shantalinskii K., Vasil’ev A., Gur’yanov V.

Аннотация

The characteristics of spatiotemporal variability of air temperature and ozone mass mixing ratio at 26 levels from the ground to the altitude of 64 km are considered using the ERA-Interim reanalysis data for 1979–2016. Differences are revealed in the distribution of air temperature trends between seasons and latitude zones, between the Atlantic-European, Asian-Pacific, and American sectors of the Northern Hemisphere mid-latitudes, and between the thermal regime over the land and ocean. The correlations between the layers and atmospheric circulation patterns in different seasons are assessed.

Russian Meteorology and Hydrology. 2019;44(8):501-512
pages 501-512 views

Intramonthly Variability of Daily Surface Air Temperature in Russia in 1970–2015

Babina E., Semenov V.

Аннотация

The variability of average daily surface air temperature in Russia is investigated using weather station data for 1970–2015. Three variability ranges are analyzed: interdaily (<3 days) range, synoptic (3–7 days) range, and the range of stable weather patterns (8–20 days). Standard deviations are estimated for the reference (1970–1999) and modern (2000–2015) climate periods for summer and winter. The climate continentality is observed in the spatial distribution of variability: the maximum variability for all ranges is registered in Central Siberia. The interdaily and synoptic variability decreases (as a rule by 10–20%) in winter during the modern period in most regions of Russia. In the range of 8–20 days in winter, variability increases in the regions south of 60°N, with the maximum growth (up to 30%) in the Altai krai. In summer, with the overall general decrease variability, in the western part of Russia and in South Siberia a slight increase in the interdaily and synoptic variability of average daily surface air temperature is found.

Russian Meteorology and Hydrology. 2019;44(8):513-522
pages 513-522 views

Determination of Average Monthly Heat Fluxes in the North Atlantic from EOS Aqua AMSR-E Radiometer Data

Grankov A., Milshin A., Novichikhin E.

Аннотация

The potential of using data of long-term AMSR-E (EOS Aqua satellite) microwave radiometer measurements for the determination of heat fluxes in the North Atlantic energy active zones in 2003–2011 is investigated. It is shown that there is a direct (linear regression) correlation between seasonal and interannual variations in average monthly vertical turbulent fluxes of total (sensible and latent) heat at the sea surface and brightness temperature of the ocean-atmosphere system in these zones. It is found that the highest accuracy of reproducing variations in average monthly brightness temperature can be reached using AMSR-E radiometer channels which are sensitive to the total column water vapor and sea surface temperature.

Russian Meteorology and Hydrology. 2019;44(8):523-528
pages 523-528 views

Numerical Modeling of Sea Level Oscillations in the Caspian Sea

Medvedev I., Kulikov E., Fine I., Kulikov A.

Аннотация

The object of the present study is mesoscale sea level oscillations in the Caspian Sea being the largest inland water body on the Earth. The main forces inducing sea level oscillations in this frequency range are variations in air pressure, wind stress, and tidal potential. These factors form a wide range of the Caspian Sea level variability including storm surges, seiches, and tides. To investigate the features of these oscillations, the POM (Princeton Ocean Model) numerical model was adapted to the Caspian Sea conditions. The tide-generating force in the equations of motion was specified through the tidal potential gradients over the Caspian Sea area. NCEP/CFSR reanalysis data are used to calculate meteorological impacts on the sea surface (wind stress and air pressure). The numerical model simulates well the statistical characteristics of mesoscale sea level variability in the Caspian Sea including seiches and tides.

Russian Meteorology and Hydrology. 2019;44(8):529-539
pages 529-539 views

Agriculture in the Arid Regions of Eurasia and Global Warming: RCM Ensemble Projections for the Middle of the 21st Century

Shkolnik I., Pigol’tsina G., Efimov S.

Аннотация

The study presents the quantification of changes in agroclimatic conditions for the growth of varieties of cotton, spring wheat, and spring barley in Central Asia by the middle of the 21st century. The quantification is based on the ensemble of future climate projections provided by the regional climate model with the resolution of 25 km. The IPCC RCP8.5 radiative forcing scenario is used. The expected agroclimatic consequences of global warming and the possibility of adapting agriculture in the Central Asian republics to future climate change are analyzed.

Russian Meteorology and Hydrology. 2019;44(8):540-547
pages 540-547 views

Assessment and Prediction of Droughts Using Climate Change Scenarios (The Case Study: Southeastern Iran)

Mesbahzadeh T., Soleimani Sardoo F.

Аннотация

This study investigates the influence of climate changes on droughts in the Bam region in Central Iran by using climate change scenarios. In this study, the LARS-WG model was used for predicting precipitation parameters; precipitation forecasts were made for three scenarios of climate change (A1, A1B, and B2). In the drought analysis, the SPI was used to obtain the historical and prognostic data. The results indicated that in the study area most of the years can be classified into the normal class according to the SPI index and most precipitation occurs in January, February, March, April, and May. The results also indicated that, according to the Run theory, the longest drought duration was 32 months, according to the SPI drought index with a 12-month scale, and the highest drought severity was −36.37 in this region. The highest percentage of drought frequency in the prognostic data was allocated to the severe class. These results can help immensely in managing the water resources of the region.

Russian Meteorology and Hydrology. 2019;44(8):548-554
pages 548-554 views

Variability of Summer and Autumn Total Precipitation in the Area of Long-term Hail Suppression Activities in the Republic of Moldova

Potapov E., Zasavitskii E.

Аннотация

The study presents the results of the comparative analysis of statistical characteristics for summer and autumn precipitation over the 60-year observation period in the territories protected against hail and in adjoining areas. It is found that a trend toward the precipitation decrease in May–August is observed at all analyzed weather stations. At the same time, at the weather stations located in the center of protected territories, the precipitation increases by 7–9% as compared to the background weather station. The statistical verification using the F-test corroborated the change in the characteristics of summer total precipitation at Korneshty weather station (the protected territory) at the significance level of 0.05. It is revealed that a 30% increase is registered at weather stations in the area of hail suppression activities in September (the increase in total precipitation by the first month after the end of antihail activities). The authors associate this fact with the presence of the “aftereffect” of cloud seeding with the reagents based on silver iodide.

Russian Meteorology and Hydrology. 2019;44(8):555-563
pages 555-563 views

Communications

Transformation of Tropical Cyclones on the Polar Front over the Primorsky Krai

Petrov E., Sokolikhina N., Semenov E.

Аннотация

The transformation of tropical cyclones arriving from the Northwest Pacific on the polar front is considered. Almost always it causes natural disasters in the Russian Far East. The pressure-circulation analysis of the most typical cases is presented, and the synoptic conditions accompanying them are studied in detail. The quantitative indicator of the transformation is proposed for its further use in forecasting.

Russian Meteorology and Hydrology. 2019;44(8):564-570
pages 564-570 views

Discussion

Vertical Structure and Seasonal Features of the Heat Island and Humidity Distribution over Moscow Derived from Satellite Data

Alekseeva L., Gorlach I., Kislov A.

Аннотация

The vertical structure and annual variations in the urban heat island (UHI) and dry/wet islands over Moscow are investigated using MetOp satellite data for 2015–2017. It is shown that Moscow is characterized by the dominance of the evening maximum of UHI intensity; however, the UHI intensification during the cold season mainly occurs in the daytime. According to satellite data, the maximum development of UHI over Moscow is observed in the forenoon in January. The urban effect propagates to the height of ~2000 m during the warm season and to the height of 1250 m in the forenoon and to 800 m in the evening during the cold season. During the warm season, UHI is accompanied by the dry island in the forenoon and by the wet island at the upper levels in the evening. The existence of the wet island in the lower air layers was not corroborated. Due to the current accuracy of temperature and humidity retrieval (0.5–1 K and 10%, respectively) as well as due to the low vertical resolution of satellite data, the present research is mainly methodological, and the results are preliminary and open to discussion.

Russian Meteorology and Hydrology. 2019;44(8):571-578
pages 571-578 views

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».