Conformational Transitions in 3D Model of Bovine Testicular Hyaluronidase during Molecular Docking with Glycosaminoglycan Ligands


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

In silico molecular docking of the trimer repeating unit of chondroitin sulfate (sulfated hexasaccharide) and tetramer repeating unit of heparin (sulfated octasaccharide) to the 3D model of bovine testicular hyaluronidase by the methods of computational chemistry demonstrated the presence of eight significant binding sites for these ligands (cs1–cs8). The interaction of the active site of the enzyme with the heparin ligand, which inactivates the enzyme, and the protective effect of the chondroitin sulfate ligands bound to the surface sites of the biocatalyst molecule were theoretically studied using calculation approaches. We sequentially determined binding sites for the chondroitin sulfate ligands (in positions cs2, cs4, cs7, cs8 or cs1, cs2, cs4, cs7, cs8) critical for the protein structure stabilization, whose occupancy is theoretically sufficient to prevent irreversible deformations of the enzyme molecule when the heparin ligand is introduced into the cavity of its active site. Theoretical detection of these ‘sensibility points’ on the hyaluronidase globule indicates the possibility of regulating its functioning under the binding of the glycosaminoglycan ligands that initiate the fine formation of an effective type of the surface electrostatic potential. The interaction of the glycosaminoglycan ligands with hyaluronidase is mainly determined by electrostatic forces.

作者简介

A. Maksimenko

Institute of Experimental Cardiology

编辑信件的主要联系方式.
Email: alex.v.maks@mail.ru
俄罗斯联邦, Moscow, 121552

R. Beabealashvili

Institute of Experimental Cardiology

Email: alex.v.maks@mail.ru
俄罗斯联邦, Moscow, 121552

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2018