Noncommutative Integration and Symmetry Algebra of the Dirac Equation on the Lie Groups


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The algebra of first-order symmetry operators of the Dirac equation on four-dimensional Lie groups with right-invariant metric is investigated. It is shown that the algebra of symmetry operators is in general not a Lie algebra. Noncommutative reduction mediated by spin symmetry operators is investigated. For the Dirac equation on the Lie group SO(2,1) a parametric family of particular solutions obtained by the method of noncommutative integration over a subalgebra containing a spin symmetry operator is constructed.

Sobre autores

A. Breev

National Research Tomsk State University; National Research Tomsk Polytechnic University

Autor responsável pela correspondência
Email: breev@mail.tsu.ru
Rússia, Tomsk; Tomsk

E. Mosman

National Research Tomsk State University; National Research Tomsk Polytechnic University

Email: breev@mail.tsu.ru
Rússia, Tomsk; Tomsk

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Springer Science+Business Media New York, 2016