Noncommutative Integration and Symmetry Algebra of the Dirac Equation on the Lie Groups


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The algebra of first-order symmetry operators of the Dirac equation on four-dimensional Lie groups with right-invariant metric is investigated. It is shown that the algebra of symmetry operators is in general not a Lie algebra. Noncommutative reduction mediated by spin symmetry operators is investigated. For the Dirac equation on the Lie group SO(2,1) a parametric family of particular solutions obtained by the method of noncommutative integration over a subalgebra containing a spin symmetry operator is constructed.

Авторлар туралы

A. Breev

National Research Tomsk State University; National Research Tomsk Polytechnic University

Хат алмасуға жауапты Автор.
Email: breev@mail.tsu.ru
Ресей, Tomsk; Tomsk

E. Mosman

National Research Tomsk State University; National Research Tomsk Polytechnic University

Email: breev@mail.tsu.ru
Ресей, Tomsk; Tomsk

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Springer Science+Business Media New York, 2016