Noncommutative Integration and Symmetry Algebra of the Dirac Equation on the Lie Groups


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The algebra of first-order symmetry operators of the Dirac equation on four-dimensional Lie groups with right-invariant metric is investigated. It is shown that the algebra of symmetry operators is in general not a Lie algebra. Noncommutative reduction mediated by spin symmetry operators is investigated. For the Dirac equation on the Lie group SO(2,1) a parametric family of particular solutions obtained by the method of noncommutative integration over a subalgebra containing a spin symmetry operator is constructed.

作者简介

A. Breev

National Research Tomsk State University; National Research Tomsk Polytechnic University

编辑信件的主要联系方式.
Email: breev@mail.tsu.ru
俄罗斯联邦, Tomsk; Tomsk

E. Mosman

National Research Tomsk State University; National Research Tomsk Polytechnic University

Email: breev@mail.tsu.ru
俄罗斯联邦, Tomsk; Tomsk

补充文件

附件文件
动作
1. JATS XML

版权所有 © Springer Science+Business Media New York, 2016