🔧На сайте запланированы технические работы
25.12.2025 в промежутке с 18:00 до 21:00 по Московскому времени (GMT+3) на сайте будут проводиться плановые технические работы. Возможны перебои с доступом к сайту. Приносим извинения за временные неудобства. Благодарим за понимание!
🔧Site maintenance is scheduled.
Scheduled maintenance will be performed on the site from 6:00 PM to 9:00 PM Moscow time (GMT+3) on December 25, 2025. Site access may be interrupted. We apologize for the inconvenience. Thank you for your understanding!

 

A Neural-Network Method of Predicting Defect Formation on the Surface of Thin ITO Films under Mechanical Load


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

A method for determining the number of defects arising under compressive and tensile stress in bended thin transparent conducting coatings on polymer substrates is proposed. This algorithm is based on the use of mathematical methods of artificial neural networks. The network is trained for calculating the average defect density per unit length at the input parameters corresponding to film and substrate sizes, surface resistance of the conducting coating, and bending radius. The application of this method allows one to determine the average defect density with high accuracy.

Sobre autores

D. Kirienko

Petrozavodsk State University

Autor responsável pela correspondência
Email: kirienko@petrsu.ru
Rússia, Petrozavodsk, 185910

O. Berezina

Petrozavodsk State University

Email: kirienko@petrsu.ru
Rússia, Petrozavodsk, 185910

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Pleiades Publishing, Ltd., 2018