A Neural-Network Method of Predicting Defect Formation on the Surface of Thin ITO Films under Mechanical Load
- 作者: Kirienko D.A.1, Berezina O.Y.1
-
隶属关系:
- Petrozavodsk State University
- 期: 卷 44, 编号 5 (2018)
- 页面: 401-403
- 栏目: Article
- URL: https://bakhtiniada.ru/1063-7850/article/view/207641
- DOI: https://doi.org/10.1134/S1063785018050073
- ID: 207641
如何引用文章
详细
A method for determining the number of defects arising under compressive and tensile stress in bended thin transparent conducting coatings on polymer substrates is proposed. This algorithm is based on the use of mathematical methods of artificial neural networks. The network is trained for calculating the average defect density per unit length at the input parameters corresponding to film and substrate sizes, surface resistance of the conducting coating, and bending radius. The application of this method allows one to determine the average defect density with high accuracy.
作者简介
D. Kirienko
Petrozavodsk State University
编辑信件的主要联系方式.
Email: kirienko@petrsu.ru
俄罗斯联邦, Petrozavodsk, 185910
O. Berezina
Petrozavodsk State University
Email: kirienko@petrsu.ru
俄罗斯联邦, Petrozavodsk, 185910
补充文件
