A Neural-Network Method of Predicting Defect Formation on the Surface of Thin ITO Films under Mechanical Load


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

A method for determining the number of defects arising under compressive and tensile stress in bended thin transparent conducting coatings on polymer substrates is proposed. This algorithm is based on the use of mathematical methods of artificial neural networks. The network is trained for calculating the average defect density per unit length at the input parameters corresponding to film and substrate sizes, surface resistance of the conducting coating, and bending radius. The application of this method allows one to determine the average defect density with high accuracy.

作者简介

D. Kirienko

Petrozavodsk State University

编辑信件的主要联系方式.
Email: kirienko@petrsu.ru
俄罗斯联邦, Petrozavodsk, 185910

O. Berezina

Petrozavodsk State University

Email: kirienko@petrsu.ru
俄罗斯联邦, Petrozavodsk, 185910

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2018