Mitochondrial dysfunction as a probable mechanism for triggering inflammatory joint diseases
- 作者: Goncharov A.G.1, Tatarkina M.A.1, Lobanova V.V.1, Kozenkov I.I.1, Dzhigkaev A.K.2, Gunbin K.V.1
-
隶属关系:
- Immanuel Kant Baltic Federal University
- Center for High Medical Technologies
- 期: 卷 26, 编号 4 (2023)
- 页面: 501-506
- 栏目: Forum Sochi 2023
- URL: https://bakhtiniada.ru/1028-7221/article/view/253433
- DOI: https://doi.org/10.46235/1028-7221-13991-MDA
- ID: 253433
如何引用文章
全文:
详细
The article concerns the contribution of mitochondrial dysfunction to the development of inflammatory joint diseases. Mitochondria are the main suppliers of adenosine triphosphate (ATP). Reactive oxygen species (ROS) are a by-product of this metabolic process. Mitochondria also have an effective antioxidant mechanism: there is a certain balance between the ROS formation and their inactivation. Accumulation with age of mutations (single nucleotide substitutions, e.g., transversions, transitions, and deletions) in mitochondrial DNA, may cause a disorder in selective destruction (utilization) of damaged and dysfunctional mitochondria (mitophagy) thus leading to imbalance between the ROS production and their neutralization. This process is triggered by both internal factors (ROS overproduction) and external factors, i.e., tissue damage / injury and infection. The failure of quality control mechanisms resulting from disruption of mitophagy leads to a significant increase in terminally damaged mitochondria, which become a threat to cell survival. High level of genetic mutations accumulating with age in mitochondrial genome causes an increased formation of ROS, which, in turn, are one of the leading activators of the cytosolic NLRP3 protein, the main component of inflammasome type of the same name. Increased inflammasome formation ultimately triggers caspase-1 dependent production of pro-inflammatory interleukins-1β (IL-1β) and 18 (IL-18). Inadequate removal of damaged mitochondria leads to hyperactivation of inflammatory signaling pathways and, subsequently, to chronic systemic inflammation and development of inflammatory diseases, including primary osteoarthritis (OA). To assess the level of mitochondrial dysfunction, we assessed the numbers of mitochondrial genome copies in post-mitotic muscle cells in 48 patients aged 45 to 95 years who were diagnosed with OA of the knee or hip joints. As a result of our study, we have discovered and confirmed some regularities of human mtDNA mutations corresponding to those in vertebrates, and, in particular, in mammals. Degenerate mutation spectra (without classification of mutations by mtDNA chains and the context of surrounding nucleotides) were constructed for mtDNA in general, and for each individual sample. It was demonstrated that, in one-third of muscle samples, the critical threshold of mtDNA heteroplasmy was exceeded, at which the aberrant biochemical phenotype, in terms of oxidative phosphorylation functioning, (OXPHOS) becomes dominant. Of note, the heteroplasmy rates are lower in older patients who have had significant physical activity during their lives (sports, moderate physical work, etc.). Moreover, the heteroplasmy showed an inverse correlation with high mtDNA copy number. The results obtained can be used to diagnose pathologies in elderly, and the process of healthy aging.
作者简介
Andrey Goncharov
Immanuel Kant Baltic Federal University
编辑信件的主要联系方式.
Email: agoncharov59@mail.ru
PhD (Medicine), Senior Research Associate, Center for Immunology and Cellular Biotechnologies, Immanuel Kant Baltic Federal University
俄罗斯联邦, KaliningradM. Tatarkina
Immanuel Kant Baltic Federal University
Email: agoncharov59@mail.ru
Research Laboratory Assistant, Center for Genomic Research, Immanuel Kant Baltic Federal University
俄罗斯联邦, KaliningradV. Lobanova
Immanuel Kant Baltic Federal University
Email: agoncharov59@mail.ru
Research Laboratory Assistant, Center for Genomic Research, Immanuel Kant Baltic Federal University
俄罗斯联邦, KaliningradI. Kozenkov
Immanuel Kant Baltic Federal University
Email: agoncharov59@mail.ru
Junior Research Associate, Center for Genomic Research, Immanuel Kant Baltic Federal University
俄罗斯联邦, KaliningradA. Dzhigkaev
Center for High Medical Technologies
Email: agoncharov59@mail.ru
PhD (Medicine), Head, Department of Traumatology and Orthopedics, Center for High Medical Technologies
俄罗斯联邦, KaliningradK. Gunbin
Immanuel Kant Baltic Federal University
Email: agoncharov59@mail.ru
PhD (Biology), Senior Research Associate, Center for Genomic Research, Immanuel Kant Baltic Federal University
俄罗斯联邦, Kaliningrad参考
- Ганковская Л.В., Артемьева О.В., Намазова-Баранова Л.С., Семенков В.Ф., Свитич О.А., Греченко В.В. Иммунологические аспекты старения и возраст-ассоциированная патология. М.: Педиатръ, 2021. 156 с. [Gankovskaya L.V., Artemyeva O.V., Namazova-Baranova L.S., Semenkov V.F., Svitich O.A., Grechenko V.V. Immunological aspects of aging and age-associated pathology]. Moscow: Pediatr, 2021. 156 p.
- Зоткин Е.Г., Дыдыкина И.С., Лила А.М. Воспалительная теория старения, возраст-ассоциированные заболевания и остеоартрит // РМЖ, 2020. № 7. С. 33-38. [Zotkin E.G., Dydykina I.S., Lila A.M. Inflammatory theory of aging, age-related diseases and osteoarthritis. breast cancer. RMZh = Russian Medical Journal, 2020, no. 7, pp. 33-38. (In Russ.)]
- Allen K.D., Thoma L.M., Golightly Y.M. Epidemiology of osteoarthritis. Osteoarthritis Cartilage, 2022, Vol. 30, no. 2, pp. 184-195.
- Arbeithuber B., Hester J., Cremona M.A., Stoler N., Zaidi A., Higgins B., Anthony K., Chiaromonte F., Diaz F.J., Makova K.D. Age-related accumulation of de novo mitochondrial mutations in mammalian oocytes and somatic tissues. PLoS Biol., 2020, Vol. 18, no. 7, e3000745. doi: 10.1371/journal.pbio.3000745.
- Bax B.E. Mitochondrial neurogastrointestinal encephalomyopathy: approaches to diagnosis and treatment. J. Transl. Genet. Genom., 2020, Vol. 4, pp. 1-16.
- Choubey V., Zeb A., Kaasik A. Molecular mechanisms and regulation of mammalian mitophagy. Cells, 2021, Vol. 11, no. 1, 38. doi: 10.3390/cells11010038.
- Dabravolski S.A., Nikiforov N.G., Zhuravlev A.D., Orekhov N.A., Grechko A.V., Orekhov A.N. Role of the mtDNA mutations and mitophagy in inflammaging. Int. J. Mol. Sci., 2022, Vol. 23, no. 3, 1323. doi: 10.3390/ijms23031323.
- Fang T., Wang M., Xiao H., Wei X. Mitochondrial dysfunction and chronic lung disease. Cell Biol. Toxicol., 2019, Vol. 35, no. 6, pp. 493-502.
- Franceschi C., Bonafè M., Valensin S., Olivieri F., de Luca M., Ottaviani E., De Benedictis G. Inflamm-aging. An evolutionary perspective on immunosenescence. Ann. N. Y. Acad. Sci., 2000, Vol. 908, pp. 244-254.
- Jang J.Y., Blum A., Liu J., Finkel T. The role of mitochondria in aging. J. Clin. Invest., 2018, Vol. 128, no. 9, pp. 3662-3670.
- Meyers D.E., Basha H.I., Koenig M.K. Mitochondrial cardiomyopathy: pathophysiology, diagnosis, and management. Tex. Heart Inst. J., 2013, Vol. 40, no. 4, pp. 385-394.
- Mikhailova A.G., Mikhailova A.A., Ushakova K., Tretiakov E.O., Iliushchenko D., Shamansky V., Lobanova V., Kozenkov I., Efimenko B., Yurchenko A.A., Kozenkova E., Zdobnov E.M., Makeev V., Yurov V., Tanaka M., Gostimskaya I., Fleischmann Z., Annis S., Franco M., Wasko K., Denisov S., Kunz W.S., Knorre D., Mazunin I., Nikolaev S., Fellay J., Reymond A., Khrapko K., Gunbin K., Popadin K. A mitochondria-specific mutational signature of aging: increased rate of A > G substitutions on the heavy strand. Nucleic Acids Res., 2022, Vol. 50, no. 18, pp. 10264-10277.
- Prasun P. Mitochondrial dysfunction in metabolic syndrome. Biochim. Biophys. Acta Mol. Basis Dis., 2020, Vol. 1866, no. 10,165838. doi: 10.1016/j.bbadis.2020.165838.
- Ray K. Mitochondrial dysfunction in Crohn’s disease. Nat. Rev. Gastroenterol. Hepatol., 2020, Vol. 17, no. 5, 260. doi: 10.1038/s41575-020-0291-y.
- Sanchez-Contreras M., Sweetwyne M.T., Tsantilas K.A., Whitson J.A., Campbell M.D., Kohrn B.F., Kim H.J., Hipp M.J., Fredrickson J., Nguyen M.M., Hurley J.B., Marcinek D.J., Rabinovitch P.S., Kennedy S.R. The multi-tissue landscape of somatic mtDNA mutations indicates tissue-specific accumulation and removal in aging. Elife, 2023, Vol. 12, e83395. doi: 10.7554/eLife.83395.
补充文件
