Усиление наночастицами золота цитотоксического действия облучения протонами в опытах in vivo

Обложка

Цитировать

Полный текст

Аннотация

Цель: Оценить биоэффективность и биобезопасность совместного применения в биомедицине и возможного воздействия на окружающую среду облучения протонами и наночастиц золота (AuНЧ) на модели высшего беспозвоночного животного из подотряда ракообразные Daphnia magna в опытах in vivo.

Материал и методы: Синтез AuНЧ осуществляли одностадийным методом фемтосекундной лазерной аблации. В качестве модельного тест-организма использовали лабораторную культуру Daphnia magna. Культивировали животных в оптимальных условиях климатостата (модель Р2). Биологические показатели (выживаемость, плодовитость и цитотоксичность) оценивали в двух последовательных поколениях (F0) и (F1). Острому облучению подвергали только животных родительского поколения (F0) на протонном комплексе «Прометеус» сканирующим пучком протонов (энергия 150 МэВ). Выживаемость и плодовитость D. magna оценивали в 21-суточном эксперименте на ежедневной основе. Всего было проанализировано от 10 до 60 особей в контрольных и экспериментальных группах. Цитотоксичность анализировали модифицированным для исследования эффекта на беспозвоночных животных в опытах in vivo МТТ-тестом на планшетном иммуноферментном анализаторе StatFax 2100 (США, VIS-модель). На цитотоксичность проанализировано от 11 до 97 образцов. В каждом образце было по 20 десятисуточных животных. Результаты обработаны методами математической статистики с поправкой на множественное сравнение.

Результаты: Облучение в дозах 10 и 30 Гр вызывало снижение выживаемости животных, которое усиливалось AuНЧ в 1,35 раза. Нарушение репродуктивной функции обнаружено как в облученном, так и в первом поколении животных. Применение НЧ не вызывало оксидативный стресс у D. magna, однако усиливало цитотоксическое действие облучения протонами. Вклад в цитотоксический эффект вносили AuНЧ.

Выводы: Поскольку полученные результаты согласуются с данными, опубликованными в цитируемых работах на позвоночных животных, можно предположить универсальный механизм цитотоксического действия облучения протонами в сочетании с AuНЧ как на беспозвоночных, так и позвоночных животных, включая человека и возможность применения AuНЧ в качестве радиосенсибилизаторов для усиления эффекта облучения в бинарных технологиях протонной терапии.

Об авторах

Д. Т. Петросова

Обнинский институт атомной энергетики

Email: petrosovad@yandex.ru
Обнинск

Д. В. Ускалова

Обнинский институт атомной энергетики

Email: petrosovad@yandex.ru
Обнинск

О. В. Кузьмичева

Обнинский институт атомной энергетики

Email: petrosovad@yandex.ru
Обнинск

В. О. Сабуров

Медицинский радиологический научный центр им. А.Ф. Цыба Минздрава России

Email: petrosovad@yandex.ru
Обнинск

Е. И. Сарапульцева

Обнинский институт атомной энергетики; Национальный исследовательский ядерный университет "МИФИ"

Email: petrosovad@yandex.ru
Обнинск; Москва

Список литературы

  1. Бушманов А.Ю., Шейно И.Н., Липенгольц А.А., Соловьев А.Н., Корякин С.Н. Перспективы применения комбинированных технологий в протонной терапии злокачественных новообразований // Медицинская радиология и радиационная безопасность. 2019. Т. 64, № 3. С. 11–18 [Bushmanov АYu, Sheino IN, Lipengolts АА, Soloviev AN, Koryakin SN. Prospects of Proton Therapy Combined Technologies in the Treatment of Cancer. Medical Radiology and Radiation Safety. 2019;64(3):11–18 (In Russ.)]. doi: 10.12737/article_5cf237bf846b67.57514871
  2. Peukert D, Kempson I, Douglass M, Bezak E. Gold Nanoparticle Enhanced Proton Therapy: a Monte Carlo Simulation of the Effects of Proton Energy, Nanoparticle Size, Coating Material, and Coating Thickness on Dose and Radiolysis Yield. Med Phys. 2020; 47(2):651-661. doi: 10.1002/mp.13923. PMID: 31725910
  3. Benn TM, Westerhoff P. Nanoparticle Silver Released into Water from Commercially Available Sock Fabrics. Environ Sci Technol. 2008;42(11):4133-9. Erratum in: Environ Sci Technol. 2008; 42(18):7025-6. doi: 10.1021/es7032718. PMID: 18589977
  4. Petersen EJ, Pinto RA, Mai DJ, Landrum PF, Weber WJ Jr. Influence of Polyethyleneimine Graftings of Multi-Walled Carbon Nanotubes on their Accumulation and Elimination by and Toxicity to Daphnia Magna. Environ Sci Technol. 2011;45(3):1133-8. doi: 10.1021/es1030239. PMID: 21182278.
  5. Baun A, Hartmann NB, Grieger K, Kusk KO. Ecotoxicity of Engineered Nanoparticles to Aquatic Invertebrates: a Brief Review and Recommendations for Future Toxicity Testing. Ecotoxicology. 2008;17(5):387-95. doi: 10.1007/s10646-008-0208-y. PMID: 18425578
  6. Fuller N., Lerebours A., Smith J.T., Ford A.T. The Biological Effects of Ionising Radiation on Crustaceans: a Review. Aquat. Toxicol. 2015;167:55–67. http://dx.doi. org/10.1016/j.aquatox.2015.07.013
  7. Feswick A, Griffitt RJ, Siebein K, Barber DS. Uptake, Retention and Internalization of Quantum Dots in Daphnia is Influenced by Particle Surface Functionalization. Aquat Toxicol. 2013;130-131:210-8. doi: 10.1016/j.aquatox.2013.01.002. PMID: 23419536.
  8. Liu A, Ye B. Application of Gold Nanoparticles in Biomedical Researches and Diagnosis. Clin Lab. 2013;59(1-2):23-36. PMID: 23505903.
  9. Финогенова Ю.А., Липенгольц А.А., Скрибицкий В.А., Шпакова К.Е., Смирнова А.В., Скрибицкая А.В., Сычева Н.Н., Григорьева Е.Ю. Металлсодержащие наноразмерные радиосенсибилизаторы для лучевой терапии злокачественных новообразований // Медицинская физика, 2023.№ 3. С 70-86 [Finogenova YA, Lipengolts AA, Skribitskiy VA, Shpakova KE, Smirnova AV, Skribitskaya AV, Sycheva NN, Grigorieva EY. Metal Nanoparticles as Radiosensitizers for Cancer Radiotherapy in Vivo. Meditsinskaya Fizika = Medical Physics, 2023;3:70-86 (In Russ.)]. doi: 10.52775/1810-200x-2023-99-3-70-86
  10. Скрибицкий В.А., Позднякова Н.В., Липенгольц А.А., Попов А.А., Тихоновский Г.В., Финогенова Ю.А., Смирнова А.В., Григорьева Е.Ю. Спектрофотометрический метод оценки размера и концентрации лазерно-аблированных золотых наночастиц // Биофизика. 2022. Т. 67, № 1. С. 30–36 [Skribitskiy VA, Pozdnyakova NV, Lipengolts AA, Popov AA, Tikhonovskiy GV, Finogenova YuA, Smirnova AV, Grigorieva EYu. A Spectrophotometric Method for Evaluation of Size and Concentration of Laser Ablated Gold Nanoparticles. Biofizika = Biophisics. 67(1):30–36 (In Russ.)]. doi: 10.31857/S0006302922010045.
  11. Test Guideline. Daphnia Magna Reproduction Test. OECD Guideline for the Testing of Chemicals. Paris, OECD Publ., 2012. No. 211. P. 26. http://dx.doi.org/10.1787/20745761.
  12. Cancer Cell Culture. Methods and Protocols / Ed. I.A.Cree. New York, Dordrecht, Heidelberg, London, Springer, Human Press, 2011. P. 237-244.
  13. Gorfine M, Schlesinger M, Hsu L. K-Sample Omnibus Non-Proportional Hazards Tests Based on Right-Censored Data. Stat Methods Med Res. 2020;29(10):2830-2850. doi: 10.1177/0962280220907355
  14. Li S, Penninckx S, Karmani L, Heuskin AC, Watillon K, Marega R, Zola J, Corvaglia V, Genard G, Gallez B, Feron O, Martinive P, Bonifazi D, Michiels C, Lucas S. LET-Dependent Radiosensitization Effects of Gold Nanoparticles for Proton Irradiation. Nanotechnology. 2016;27(45):455101. Epub 2016 Oct 3. doi: 10.1088/0957-4484/27/45/455101. PMID: 27694702
  15. Kim JK, Seo SJ, Kim HT, Kim KH, Chung MH, Kim KR, et al. Enhanced Proton Treatment in Mouse Tumors Through Proton Irradiated Nanoradiator Effects on Metallic Nanoparticles. Phys Med Biol. 2012;57(24):8309-23. doi: 10.1088/0031-9155/57/24/8309
  16. Cunningham C, de Kock M, Engelbrecht M, Miles X, Slabbert J, Vandevoorde C. Radiosensitization Effect of Gold Nanoparticles in Proton Therapy. Front Public Health. 2021;9:699822. doi: 10.3389/fpubh.2021.699822. PMID: 34395371; PMCID: PMC8358148
  17. Sarapultseva EI, Dubrova YE. The Long-Term Effects of Acute Exposure to Ionising Radiation on Survival and Fertility in Daphnia Magna. Environ Res. 2016;150:138-143. doi: 10.1016/j.envres.2016.05.046. PMID: 27288911.
  18. Nakamori T, Yoshida S, Kubota Y, Ban-nai T, Kaneko N, Hasegawa M, Itoh R. Effects of Acute Gamma Irradiation on Folsomia Candida (Collembola) in a Standard Test. Ecotoxicol Environ Saf. 2008;71(2):590-6. doi: 10.1016/j.ecoenv.2007.10.029. PMID: 18155145
  19. Won EJ, Lee JS. Gamma Radiation Induces Growth Retardation, Impaired Egg Production, and Oxidative Stress in the Marine Copepod Paracyclopina Nana. Aquat Toxicol. 2014;150:17-26. doi: 10.1016/j.aquatox.2014.02.010. PMID: 24632311
  20. Jönsson K.I. Radiation Tolerance in Tardigrades: Current Knowledge and Potential Applications in Medicine. Cancers 2019;11(9):1333; https://doi.org/10.3390/cancers11091333.
  21. Dubrova YE, Sarapultseva EI. Radiation-Induced Transgenerational Effects in Animals. Int J Radiat Biol. 2022;98(6):1047-1053. doi: 10.1080/09553002.2020.1793027. PMID: 32658553.
  22. Min H, Sung M, Son M, Kawasaki I, Shim YH. Transgenerational Effects of Proton Beam Irradiation on Caenorhabditis Elegans Germline Apoptosis. Biochem Biophys Res Commun. 2017;490(3):608-615. doi: 10.1016/j.bbrc.2017.06.085. PMID: 28630005.
  23. Hoppe BS, Harris S, Rhoton-Vlasak A, Bryant C, Morris CG, Dagan R, Nichols RC, Mendenhall WM, Henderson RH, Li Z, Mendenhall NP. Sperm Preservation and Neutron Contamination Following Proton Therapy for Prostate Cancer Study. Acta Oncol. 2017;56(1):17-20. doi: 10.1080/0284186X.2016.1205219. PMID: 27420031
  24. Wo JY, Viswanathan AN. The Impact of Radiotherapy on Fertility, Pregnancy, and Neonatal Outcomes in Female Cancer Patients. Int J Radiat Oncol Biol Phys. 2009;73:1304–1312. doi: 10.1016/j.ijrobp.2008.12.016.
  25. Streffer C, Shore R, Konermann G, Meadows A, Uma Devi P, Preston Withers J, Holm LE, Stather J, Mabuchi K, H R. Biological Effects after Prenatal Irradiation (Embryo and Fetus). A Report of the International Commission on Radiological Protection. Ann ICRP. 2003;33(1-2):5-206. PMID: 12963090.
  26. Falk M. Nanodiamonds and Nanoparticles as Tumor Cell Radiosensitizers-Promising Results but an Obscure Mechanism of Action. Ann Transl Med. 2017;5(1):18. doi: 10.21037/atm.2016.12.62. PMID: 28164103; PMCID: PMC5253274
  27. Hainfeld JF, Dilmanian FA, Zhong Z, Slatkin DN, Kalef-Ezra JA, Smilowitz HM. Gold Nanoparticles Enhance the Radiation Therapy of a Murine Squamous Cell Carcinoma. Phys Med Biol. 2010;55(11):3045-59. doi: 10.1088/0031-9155/55/11/004. PMID: 20463371
  28. Ates M, Danabas D, Ertit Tastan B, Unal I, Cicek Cimen IC, Aksu O, Kutlu B, Arslan Z. Assessment of Oxidative Stress on Artemia salina and Daphnia magna After Exposure to Zn and ZnO Nanoparticles. Bull Environ Contam Toxicol. 2020; 104(2):206-214. doi: 10.1007/s00128-019-02751-6. PMID: 31748865.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».