Experience in Developing Radiation Sources for Personalized Brachytherapy Based on Titanium Alloys
- Authors: Chuvilin D.Y.1, Skobelin I.I.1, Kurochkin A.V.1, Makoveeva K.A.1, Strepetov A.N.1, Karalkin P.A.2, Karalkina M.A.3, Reshetov I.V.2
-
Affiliations:
- National Research Centre "Kurchatov Institute"
- First Sechenov State Medical University
- Federal Center of Brain Research and Neurotechnologies
- Issue: Vol 69, No 2 (2024)
- Pages: 73-80
- Section: Radiation Physics, Technique and Dosimetry
- URL: https://bakhtiniada.ru/1024-6177/article/view/363913
- DOI: https://doi.org/10.33266/1024-6177-2024-69-2-73-80
- ID: 363913
Cite item
Full Text
Abstract
Purpose: The study explores the possibility of manufacturing radiation sources for personalized brachytherapy using titanium alloys, activated in a neutron flux reactor, by measuring the radiation composition of applicator implants and their dosimetric characteristics.
Material and methods: A 3D implant of a brachytherapy source was made from a titanium alloy using an additive selective laser melting setup. The titanium 3D prototype was irradiated for three days in the horizontal experimental channel of the IR-8 reactor. Subsequently, measurements of the gamma-ray spectrum from the irradiated implant were carried out on a spectrometer, and dose characteristics of the 3D implant were measured using a dosimeter-radiometer.
Results: In the experimental 3D implant obtained by us, the radionuclide 47Sc exhibits the highest activity. Currently, 47Sc is considered a promising candidate for brachytherapy. It possesses attractive nuclear and physical properties as a β-emitter, decaying into the ground state (27 %) of 47Ti (Eβmax = 600 keV) and the excited state of 47Ti (Eβmax = 439 keV) with a half-life of 3.4 days. Additionally, 47Sc emits γ-radiation at an energy of 159 keV (68 %), which is suitable for imaging, allowing for SPECT or planar scintigraphy and obtaining a picture of the drug’s distribution in the body. In the experimental implant, small amounts of scandium radionuclides – 46Sc and 48Sc, were also detected, emitting sufficiently hard gamma radiation, which can pose a problem for patient dosage determination. The advantages of using titanium-47 with an enrichment of over 95 %, economically available, have been demonstrated, allowing for high radiochemical yields of 47Sc, sufficient for therapy.
Conclusion: The 3D printing technology allows the production of a customized applicator for brachytherapy of specific dimensions and the delivery of arbitrarily-shaped sources to the tumor area for personalized therapy of oncological diseases. When implanting sources based on titanium alloys activated in a neutron flux of a research nuclear reactor, the radionuclide scandium-47 exhibits the highest activity.
About the authors
D. Yu. Chuvilin
National Research Centre "Kurchatov Institute"
Email: pkaralkin@gmail.com
Moscow
I. I. Skobelin
National Research Centre "Kurchatov Institute"
Email: pkaralkin@gmail.com
Moscow
A. V. Kurochkin
National Research Centre "Kurchatov Institute"
Email: pkaralkin@gmail.com
Moscow
K. A. Makoveeva
National Research Centre "Kurchatov Institute"
Email: pkaralkin@gmail.com
Moscow
A. N. Strepetov
National Research Centre "Kurchatov Institute"
Email: pkaralkin@gmail.com
Moscow
P. A. Karalkin
First Sechenov State Medical University
Email: pkaralkin@gmail.com
Moscow
M. A. Karalkina
Federal Center of Brain Research and Neurotechnologies
Email: pkaralkin@gmail.com
Moscow
I. V. Reshetov
First Sechenov State Medical University
Email: pkaralkin@gmail.com
Moscow
References
- Berger D., Van Dyk S., Beaulieu L., Major T., Kron T. Modern Tools for Modern Brachytherapy. Clin. Oncol. (R Coll Radiol). 2023;35;8:e453-e468.
- Белоусов А.В., Лыкова Е.Н. Введение в брахитерапию: Учебное пособие. М., 2019. [Belousov A.V., Lykova E.N. Introduction to Brachytherapy. Textbook. Moscow Publ., 2019 (In Russ.)].
- Chargari C., Deutsch E., Blanchard P., Gouy S., Martelli H., Guerin F., Dumas I., Bossi A., Morice P., Viswanathan A.N., et al. Brachytherapy: An Overview for Clinicians. CA Cancer J. Clin. 2019;69;5:386-401.
- Hannoun-Levi J.M. Brachytherapy for Prostate Cancer: Present and Future. Cancer Radiother. 2017;21;6-7:469-72.
- Коллеров М.Ю., Спектор В.С., Мамонов А.М., Скворцова С.В., Гусев Д.В., Гуртовая Г.В. Проблемы и перспективы применения титановых сплавов в медицине // Титан. Научно-технический журнал. 2015. № 2. С. 42-53. Kollerov M.U., Spektor V.S., Mamonov A.M., Skvortsova S.V., Gusev D.V., Gurtovaya G.V. Problems and Prospects of Using Titanium Alloys in Medicine. Journal Titanium. 2015;2:42-53 (In Russ.).
- Liang Y., Wang Z., Zhang H., Gao Z., Zhao J., Sui A., Liu Z., Wang J. Three-Dimensional-Printed Individual Template-Guided125I Seed Implantation for the Cervical Lymph Node Metastasis: A Dosimetric and Security Study. J Cancer Res. Ther. 2018;14:1:30-35.
- Kang W., Zhang H., Liang Y., Chen E., Zhao J., Gao Z., Wang J. Comparison of Three-Dimensional-Printed Template-Guided and Traditional Implantation of125I Seeds for Gynecological Tumors: A Dosimetric and Efficacy Study. J. Cancer Res. Ther. 2021;17;3:688-94.
- Рязанцев Е.П., Насонов В.А., Егоренков П.М., Яковлев В.В., Яшин А.Ф., Кузнецов И.А., Рожнов В.Н. Современное состояние и перспективы использования реактора ИР-8 РНЦ «КИ» // Материалы международной научно-технической конференции «Исследовательские реакторы в XXI веке». Москва, ГУП НИКИЭТ, 20-23 июня 2006. М. 2006. Ryazantsev E.P., Nasonov V.A., Egorenkov P.M., Yakovlev V.V., Yashin A.F., Kuznetsov I.A., Rozhnov V.N. Current State and Prospects of Using the IR-8 Reactor of the RNC «KI». Proceedings of the International Scientific and Technical Conference Research reactors in the 21st century. Moscow, GUP NIKIET, June 20-23, 2006. Moscow Publ., 2006 (In Russ.).
- Strepetov A.N., Panin Y.N. , Parshin P.P., Monochromatic Neutron Flux at Experimental Facilities of the IR-8 Reactor. Physics of Atomic Nuclei. 2022;85;8:1294–1298.
- Evaluated Nuclear Data File (ENDF). 2023. URL: https://www-nds.iaea.org/exfor/endf.htm.
- Loveless C.S., Blanco J.R., Diehl G.L., 3rd, Elbahrawi R.T., Carzaniga T.S., Braccini S., Lapi S.E. Cyclotron Production and Separation of Scandium Radionuclides from Natural Titanium Metal and Titanium Dioxide Targets. J Nucl Med. 2021;62;1:131-6.
- Kilian K., Pyrzynska K. Scandium Radioisotopes-Toward New Targets and Imaging Modalities. Molecules. 2023;28;22.
- Meier J.P., Zhang H.J., Freifelder R., Bhuiyan M., Selman P., Mendez M., Kankanamalage P.H.A., Brossard T., Pusateri A., Tsai H.M., et al. Accelerator-Based Production of Scandium Radioisotopes for Applications in Prostate Cancer: Toward Building a Pipeline for Rapid Development of Novel Theranostics. Molecules. 2023;28;16.
- Mikolajczak R., Huclier-Markai S., Alliot C., Haddad F., Szikra D., Forgacs V., Garnuszek P. Production of Scandium Radionuclides for Theranostic Applications: Towards Standardization of Quality Requirements. EJNMMI Radiopharm Chem. 2021;6;1:19.
- Jalilian A.R., Engle J.W., Osso J.A. Cyclotron Production of Non-conventional Theranostic Radionuclides and Radiopharmaceuticals. Curr. Radiopharm. 2021;14;4:304–5.
- Dellepiane G., Casolaro P., Mateu I., Scampoli P., Voeten N., Braccini S.47Sc and46Sc Cross-Section Measurement for an Optimized47Sc Production with an 18 MeV Medical PET Cyclotron. Appl Radiat Isot. 2022;189:110428.
Supplementary files

