Consequences of COVID-19 for the musculoskeletal and peripheral nervous systems. Diagnosis of complications (literature review)

Cover Page

Cite item

Full Text

Abstract

COVID-19 disease does not only lead to impaired respiratory function. Post-COVID complications are multiple with the involvement of many body systems, including the musculoskeletal system and the peripheral nervous system. Diseases of the musculoskeletal system include myalgia, myositis, rhabdomyolysis, acute arthralgia, arthritis, bone osteoporosis. Damage to the peripheral nervous system caused by coronavirus infection includes plexopathy due to lying down, poly-neuropathy, Guillain–Barre syndrome. This descriptive literature review discusses the effects of COVID-19 on the musculoskeletal system and the peripheral nervous system of patients. Data are presented on the use of diagnostic tools such as computed tomography, magnetic resonance imaging, and ultrasound scans to detect pathology.

About the authors

Natalia Yu. Matveeva

N.N. Priorov National Medical Research Center of Traumatology and Orthopedics

Email: nymatveeva@gmail.com

MD, Cand. Sci. (Med.), ultrasound diagnostics doctor

Russian Federation, Moscow

Ekaterina V. Makarova

N.N. Priorov National Medical Research Center of Traumatology and Orthopedics

Email: e_v_makarova@mail.ru
Russian Federation, Moscow

Nikolay A. Eskin

N.N. Priorov National Medical Research Center of Traumatology and Orthopedics

Author for correspondence.
Email: cito-uchsovet@mail.ru
ORCID iD: 0000-0003-4738-7348
SPIN-code: 1215-9279

MD, Dr. Sci. (Med.), professor

Russian Federation, Moscow

Tatiana V. Sokolova

N.N. Priorov National Medical Research Center of Traumatology and Orthopedics

Email: sokolovatv63@mail.ru

MD, Cand. Sci. (Med.), neurologist

Russian Federation, Moscow

References

  1. who.int [Internet]. Coronavirus Disease (COVID-19) Pandemic. World Health Organization; 2020 Oct 30 [cited 2022 Feb 10]. Available from: https://www.who.int/emergencies/diseases/novel-coronavirus-2019
  2. Disser NP, De Micheli AJ, Schonk MM, et al. Musculoskeletal consequences of COVID-19. J Bone Joint Surg Am. 2020;102(14):1197–1204. doi: 10.2106/JBJS.20.00847
  3. Ghannam M, Alshaer Q, Al-Chalabi M, et al. Neurological involvement of coronavirus disease 2019: a systematic review. J Neurol. 2020;267(11):3135–3153. doi: 10.1007/s00415-020-09990-2
  4. Mao L, Jin H, Wang M, et al. Neurologic manifestations of hospitalized patients with coronavirus disease 2019 in Wuhan, China. JAMA Neurol. 2020;77(6):683–690. doi: 10.1001/jamaneurol.2020.1127
  5. Piotrowicz K, Gąsowski J, Michel JP, Veronese N. Post COVID 19 acute sarcopenia: physiopathology and management. Aging Clin Exp Res. 2021;33(10):2887–2898. doi: 10.1007/s40520-021-01942-8
  6. Heydari K, Lotfi P, Shadmehri N, et al. Clinical and paraclinical characteristics of COVID-19 patients: a systematic review and meta-analysis. Tabari Biomed Stu Res J. 2022;4(1):30–47. doi: 10.18502/tbsrj.v4i1.8772
  7. Nasiri MJ, Haddadi S, Tahvildari A, et al. COVID-19 clinical characteristics, and sex-specific risk of mortality: systematic review and meta-analysis. Front Med (Lausanne). 2020;7:459. doi: 10.3389/fmed.2020.00459
  8. Ciaffi J, Meliconi R, Ruscitti P, et al. Rheumatic manifestations of COVID-19: a systematic review and meta-analysis. BMC Rheumatol. 2020;4:65. doi: 10.1186/s41927-020-00165-0
  9. Ramani SL, Samet J, Franz CK, et al. Musculoskeletal involvement of COVID-19: review of imaging. Skeletal Radiol. 2021;50(9):1763–1773. doi: 10.1007/s00256-021-03734-7
  10. Hong N, Du XK. Avascular necrosis of bone in severe acute respiratory syndrome. Clin Radiol. 2004;59(7):602–608. doi: 10.1016/j.crad.2003.12.008
  11. Lippi G, Wong J, Henry BM. Myalgia may not be assotiated with severity of coronavirus disease 2019 (COVID-19). World J Emerg Med. 2020;11(3):193–194. doi: 10.5847/wjem.j.1920-8642.2020.03.013
  12. Wang D, Hu B, Hu C, et al. Clinical characteristics of 138 hospitalized patients with 2019 coronavirus-infected pneumonia in Wuhan, China. JAMA. 2020;323(11):1061–1069. doi: 10.1001/jama.2020.1585
  13. Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395(10223):497–506. doi: 10.1016/S0140-6736(20)30183-5
  14. Li LQ, Huang T, Wang YQ, et al. COVID-19 patients’ clinical characteristics, discharge rate, and fatality rate of meta-analysis. J Med Virel. 2020;92(6):577–583. doi: 10.1002/jmv.25757
  15. Lechien JR, Chiesa-Estomba CM, Place S, et al. Clinical and epidemiological characteristics of 1420 European patients with mild-to-moderate coronavirus disease 2019. J Intern Med. 2020;288(3):335–344. doi: 10.1111/joim.13089
  16. Cummings MJ, Baldwin MR, Abrams D, et al. Epidemiology, clinical course, and outcomes of critically ill adults with COVID-19 in New York City: a prospective cohort study. Lancet. 2020;395(10239):1763–1770. doi: 10.1016/S0140-6736(20)31189-2
  17. Zhu J, Zhong Z, Ji P, et al. Clinicopathological characteristics of 8697 patients with COVID-19 in China: a meta-analysis. Fam Med Community Health. 2020;8(2):e000466. doi: 10.1136/fmch-2020-000406 Erratum in: Correction: Clinicopathological characteristics of 8697 patients with COVID-19 in China: a meta-analysis. Fam Med Community Health. 2020;8(2):e000406corr1. doi: 10.1136/fmch-2020-000406corr1
  18. Huang C, Huang L, Wang Y, et al. 6-month consequences of COVID-19 in patients discharged from hospital: a cohort study. Lancet. 2021;397(10270):220–232. doi: 10.1016/S0140-6736(20)32656-8
  19. de Andrade-Junior MC, de Salles IC, de Brito CM, et al. Skeletal muscle wasting and functional impartment in intensive care patients with severe COVID-19. Front Physiol. 2021;12:640973. doi: 10.3389/fphys.2021.640973
  20. Soares MN, Eggelbusch M, Naddaf E, et al. Skeletal muscle alterations in patients with acute Covid-19 and post-acute secular of Covid-19. J Cachexia Sarcopenia Muscle. 2022;13(1):11–22. doi: 10.1002/jcsm.12896
  21. Paneroni M, Simonelli C, Saleri M, et al. Muscle strength and physical performance in patients without previous disabilities recovering from COVID-19 pneumonia. Am J Phys Med Rehabil. 2021;100(2):105–109. doi: 10.1097/PHM.0000000000001641
  22. Leung TW, Wong KS, Hui AC, et al. Myopathic changes associated with severe acute respiratory syndrome: a postmortem case series. Arch Neurol. 2005;62(7):1113–1117. doi: 10.1001/archneur.62.7.1113
  23. Mehan WA, Yoon BC, Lang M, et al. Paraspinal myositis in patients with COVID-19 infection. AJNR Am J Neuroradiol. 2020;41(10):1949–1952. doi: 10.3174/ajnr.A6711
  24. Beydon M, Chevalier K, Al Tabaa O, et al. Myositis is a manifestation of SARS-CoV-2. Ann Rheum Dis. 2021;80:e42. doi: 10.1136/annrheumdis-2020-217573
  25. Zhang H, Charmchi Z, Seidman RJ, et al. COVID-19 associated myositis with severe proximal and bulbar weakness. Muscle Nerve. 2020;62(3):E57–E60. doi: 10.1002/mus.2700
  26. Hoong CW, Amin MN, Tan TC, Lee JE. Viral arthralgia a new manifestation of COVID-19 infection? Int J Infect Dis. 2021;104:363–369. doi: 10.1016/j.ijid.2021.01.031
  27. Gasparotto M, Framba V, Piovella C, et al. Post-COVID-19 arthritis: a case report and literature review. Clin Rheumatol. 2021;40(8):3357–3362. doi: 10.1007/s10067-020-05550-1
  28. Parisi S, Borrelli R, Bianchi S, Fusaro E. Viral arthritis and COVID-19. Lancet Rheumatol. 2020;2(11):e655–e657. doi: 10.1016/S2665-9913(20)30348-9
  29. Zhang B, Zhang S. Corticosteroid-induced osteonecrosis in COVID-19: a case for caution. J Bone Miner Res. 2020;35(9):1828–1829. doi: 10.1002/jbmr.4136
  30. Napoli N, Elderkin AL, Kiel DP, Khosla S. Managing fragility fractures during the COVID-19 pandemic. Nat Rev Endocrinol. 2020;16(9):467–468. doi: 10.1038/s41574-020-0379-z
  31. Agarwala SR, Vijayvargiya M, Pandey P. Avascular necrosis as a part of ‘long COVID-19’. BMJ Case Rep. 2021;14(7):e242101. doi: 10.1136/bcr-2021-242101
  32. Sulewski A, Sieroń D, Szyluk K, et al. Avascular necrosis bone complication after COVID-19 infection: preliminary results. Medicina (Kaunas). 2021;57(12):1311. doi: 10.3390/medicina57121311
  33. Li YC, Bai WZ, Hashikawa T. The neuroinvasive potential of SARS-CoV2 may play a role in the respiratory failure of COVID-19 patients. J Med Virol. 2020;92(6):552–555. doi: 10.1002/jmv.25728
  34. Lahiri D, Ardila A. COVID-19 Pandemic: A Neurological Perspective. Cureus. 2020;12(4):e7889. doi: 10.7759/cureus.7889
  35. Xu XW, Wu XX, Jiang XG, et al. Clinical findings in a group of patients infected with the 2019 novel coronavirus (SARS-Cov-2) outside of Wuhan, China: retrospective case series. BMJ. 2020;368:m606. doi: 10.1136/bmj.m606
  36. Katona I, Weis J. Diseases of the peripheral nerves. Handb Clin Neurol. 2017;145:453–474. doi: 10.1016/B978-0-12-802395-2.00031-6
  37. Montalvan V, Lee J, Bueso T, et al. Neurological manifestations of COVID-19 and other coronavirus infections: a systematic review. Clin Neurol Neurosurg. 2020;194:105921. doi: 10.1016/j.clineuro.2020.105921
  38. Sindic CJ. Infectious neuropathies. Curr Opin Neurol. 2013;26(5):510–515. doi: 10.1097/WCO.0b013e328364c036
  39. Selitskii MM, Ponomarev VV, Vist EV, et al. Guillain-Barré syndrome, associated with COVID-19. Lechebnoe delo: nauchno-prakticheskii terapevticheskii zhurnal. 2021;(3):41–47. (In Russ).
  40. Sedaghat Z, Karimi N. Guillain Barre syndrome associated with COVID-19 infection: a case report. J Clin Neurosci. 2020;76:233–235. doi: 10.1016/j.jocn.2020.04.062
  41. Chaikovskaya AD, Ivanova AD, Ternovykh IK, et al. Guillain-Barré syndrome during the COVID-19 infection. Sovremennye problemy nauki i obrazovaniya. 2020;(4):164. (In Russ). doi: 10.17513/spno.29950
  42. Fernandoz CE, Franz CK, Ko JH, et al. Imaging review of peripheral nerves injuries in COVID-19. Radiology. 2021;298(3):E117–E130. doi: 10.1148/radiol.2020203116
  43. Mitry MA, Collins LK, Kazam JJ, et al. Parsonage-Turner syndrome associated with SARS-CoV2 (COVID-19) infection. Clin Imag-ing. 2021;72:8–10. doi: 10.1016/j.clinimag.2020.11.017
  44. Voss TG, Stewart CM. Parsonage-Turner syndrome after COVID-19 infection. JSES Rev Rep Tech. 2022;2(2):182–185. doi: 10.1016/j.xrrt.2021.12.004
  45. Kamel I, Barnette R. Positioning patients for spine surgery: Avoiding uncommon position-related complications. World J Orthop. 2014;5(4):425–443. doi: 10.5312/wjo.v5.i4.425
  46. Winfree CJ, Kline DG. Intraoperative positioning nerve injuries. Surg Neurol. 2005;63(1):5–18; discussion 18. doi: 10.1016/j.surneu.2004.03.024
  47. Abdelnour L, Eltahir Abdalla M, Babiker S. COVID-19 infection presenting as motor peripheral neuropathy. J Formos Med Assoc. 2020;119(6):1119–1120. doi: 10.1016/j.jfma.2020.04.024
  48. Malik GR, Wolfe AR, Soriano R, et al. Injury-prone: peripheral nerve injuries associated with prone positioning for COVID-19-related acute respiratory distress syndrome. Br J Anaesth. 2020;125(6):e478–e480. doi: 10.1016/j.bja.2020.08.045
  49. Le MQ, Rosales R, Shapiro LT, Huang LY. The down side of prone positioning: the case of a COVID-19 survivor. Am J Phys Med Rehabil. 2020;99(10):870–872. doi: 10.1097/PHM.0000000000001530
  50. Needham E, Newcombe V, Michell A, et al. Mononeuritis multiplex: an unexpectedly common feature of severe COVID-19. J Neurol. 2021;268(8):2685–2689. doi: 10.1007/s00415-020-10321-8
  51. Latronico N, Bolton CF. Critical illness polyneuropathy and myopathy: a major cause of muscle weakness and paralysis. Lancet Neurol. 2011;10(10):931–941. doi: 10.1016/S1474-4422(11)70178-8
  52. Al-Ani F, Chehade S, Lazo-Langner A. Thrombosis risk associated with COVID-19 infection. A scoping review. Thromb Res. 2020;192:152–160. doi: 10.1016/j.thromres.2020.05.039

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Scheme of indirect and potential direct effects of SARS-CoV-2 infection on the tissues of the musculoskeletal system [2, p. 1197–1204]. The primary SARS-CoV-2 respiratory infection induces systemic inflammation that can impact the musculoskeletal system. Several types of musculoskeletal cells express the ACE2 and TMPRSS2 genes, which allow for direct viral infection. However, it is unknown whether the virus can directly infect musculoskeletal tissues.

Download (155KB)
3. Fig. 2. Cross-sectional ultrasound scan of muscular hypotrophy (a), comparison with the healthy side (b). The muscle is reduced in volume, increased echogenicity, and differentiation into fibers is preserved.

Download (216KB)
4. Fig. 3. Denervation changes in the quadriceps femoris muscle, longitudinal sonogram. a — unchanged muscle, b — denervated muscle: the muscle is reduced in volume, increased echogenicity, no differentiation of fibers.

Download (443KB)
5. Fig. 4. Arthritis of the elbow joint, longitudinal sonogram. The joint capsule is hypertrophied mainly due to the synovial membrane (arrow). Intense blood flow is registered in the synovium. There is practically no fluid component in the joint cavity. 1 — olecranon; 2 — humerus.

Download (97KB)
6. Fig. 5. Longitudinal sonograms of tenosynovitis of the tendons of the long flexors of the 2nd finger of the foot (a) and the flexor tendons of the 3rd finger of the hand (b). Ultrasound signs of tenosynovitis are similar in both cases and are characterized by thickening of the tendon, fluid in the synovial membrane and hypertrophy of the synovial wall of the tendon sheath. In the color Doppler imaging mode, blood flow is recorded in the synovium.

Download (187KB)
7. Fig. 6. Aseptic necrosis of the head of the left femur in a patient with coronavirus infection (arrows). Magnetic resonance imaging findings.

Download (110KB)
8. Fig. 7. Aseptic necrosis of the tibial and femoral condyles in a 22-year-old patient with coronavirus infection. Sagittal (a) and axial (b, c) magnetic resonance imaging slices.

Download (195KB)
9. Fig. 8. Ultrasound examination of the tibial nerve in a patient with disimmune neuropathy illustrates nonspecific changes in the structure of the peripheral nerve. Transverse (a) and longitudinal (b) projections.

Download (178KB)
10. Fig. 9. Ultrasound examination in Parsonage–Turner syndrome. Thickening of the ventral branches of the C5, C6 and C7 spinal nerves, the primary upper and middle trunks of the plexus (arrows). Longitudinal (a) and transverse (b) projections of the supraclavicular part of the brachial plexus.

Download (227KB)

Copyright (c) 2022 Matveeva N.Y., Makarova E.V., Eskin N.A., Sokolova T.V.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».