Review of alternative antimicrobial therapies

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Antimicrobial resistance is a most challenging global public health problem. Today, the number of antibiotic-resistant bacterial strains has been increasing to the point of economic and social disaster. Thus, it is necessary to find alternative effective approaches to antimicrobial therapy and prevention. The most promising alternative antimicrobial therapies include antibodies; bacteriophages and bacteriophage-derived enzymes; antivirulence agents; probiotics and microbiome-modulating agents; immunostimulants; host-protective antimicrobial peptides; nanoparticles and liposomes, etc. A comprehensive approach to treating infections without exacerbating the antimicrobial resistance problem provides for combining these alternative treatments with strategies to maintain the efficacy of existing antimicrobial agents.

The review is aimed to summarize data on the causes and mechanisms underlying the development of resistance; limitations of standard treatments; alternative resistance-inhibiting treatments, their advantages and disadvantages; and future challenges. The paper presents summary of alternative antimicrobial agents at different stages of pharmaceutical development.

About the authors

Svetlana V. Romanova

Centre for Strategic Planning and Management of Biomedical Health Risks of the Federal Medical and Biological Agency

Email: sromanova@cspfmba.ru
ORCID iD: 0009-0005-3367-8883
Russian Federation, Moscow

Anastasia V. Tsypkina

Centre for Strategic Planning and Management of Biomedical Health Risks of the Federal Medical and Biological Agency

Email: atsypkina@cspfmba.ru
ORCID iD: 0000-0001-6117-0984
SPIN-code: 8311-3717

Cand. Sci. (Pharmacy)

Russian Federation, Moscow

Tatiana I. Subbotina

Centre for Strategic Planning and Management of Biomedical Health Risks of the Federal Medical and Biological Agency

Author for correspondence.
Email: tsubbotina@cspfmba.ru
ORCID iD: 0009-0008-5175-4386
Russian Federation, Moscow

Sergey M. Yudin

Centre for Strategic Planning and Management of Biomedical Health Risks of the Federal Medical and Biological Agency

Email: Yudin@cspfmba.ru
ORCID iD: 0000-0002-7942-8004

MD, Dr. Sci. (Medicine), Professor

Russian Federation, Moscow

Anton A. Keskinov

Centre for Strategic Planning and Management of Biomedical Health Risks of the Federal Medical and Biological Agency

Email: Keskinov@cspfmba.ru
ORCID iD: 0000-0001-7378-983X
SPIN-code: 7178-5020

MD, Cand. Sci. (Medicine)

Russian Federation, Moscow

Valentin V. Makarov

Centre for Strategic Planning and Management of Biomedical Health Risks of the Federal Medical and Biological Agency

Email: Makarov@cspfmba.ru
ORCID iD: 0000-0002-1907-0098
SPIN-code: 7842-8808

Cand. Sci. (Biology)

Russian Federation, Moscow

Angelica V. Zagainova

Centre for Strategic Planning and Management of Biomedical Health Risks of the Federal Medical and Biological Agency

Email: azagaynova@cspfmba.ru
ORCID iD: 0000-0003-4772-9686
SPIN-code: 6642-7819

Cand. Sci. (Biology)

Russian Federation, Moscow

Boris K. Romanov

The Russian National Research Medical University named after N.I. Pirogov

Email: Romanov_BK@rsmu.ru
ORCID iD: 0000-0001-5429-9528
SPIN-code: 8453-9166

MD, Dr. Sci. (Medicine), Associate Professor

Russian Federation, Moscow

References

  1. Dzhioev YP, Zlobin VI, Salovarova VP, et al. Analysis of the "superbacteria" issue and contemporary approaches to its solution. Proceedings of Universities. Applied Chemistry and Biotechnology. 2019;9(4):665–678. doi: 10.21285/2227-2925-2019-9-4-665-678 EDN: JYFFNC
  2. Shafaati M, Salehi M, Zare M. The twin challenges of longevity and climate change in controlling antimicrobial resistance. J Antibiot (Tokyo). 2024;77(7):399–402. doi: 10.1038/s41429-024-00730-6 EDN: ZNOYWS
  3. Nazarov PA. Alternatives to antibiotics: phage lytic enzymes and phage therapy. Bulletin of Russian State Medical University. 2018;(1):5–15. doi: 10.24075/vrgmu.2018.002 EDN: XQWGXR
  4. Neubauer D, Jaśkiewicz M, Migoń D, et al. Retro analog concept: comparative study on physico-chemical and biological properties of selected antimicrobial peptides. Amino Acids. 2017;49(10):1755–1771. doi: 10.1007/s00726-017-2473-7 EDN: HHWFOV
  5. Tsepelev VY, Lazareva IA, Gunov SV. Antimicrobial peptides — a modern alternative to antibiotics. Modern Problems of Science and Education. 2023;(3):104. doi: 10.17513/spno.32620 EDN: JDIGZA
  6. Kohanski MA, Dwyer DJ, Collins JJ. How antibiotics kill bacteria: from targets to networks. Nat Rev Microbiol. 2010;8(6):423–435. doi: 10.1038/nrmicro2333
  7. Lewis K. Platforms for antibiotic discovery. Nat Rev Drug Discov. 2013;12(5):371–387. doi: 10.1038/nrd3975 EDN: YDTISH
  8. Czaplewski L, Bax R, Clokie M, et al. Alternatives to antibiotics-a pipeline portfolio review. Lancet Infect Dis. 2016;16(2):239–251. doi: 10.1016/S1473-3099(15)00466-1
  9. La Guidara C, Adamo R, Sala C, Micoli F. Vaccines and monoclonal antibodies as alternative strategies to antibiotics to fight antimicrobial resistance. Int J Mol Sci. 2024;25(10):5487. doi: 10.3390/ijms25105487 EDN: ETJEHY
  10. Briney B, Inderbitzin A, Joyce C, Burton DR. Commonality despite exceptional diversity in the baseline human antibody repertoire. Nature. 2019;566(7744):393–397. doi: 10.1038/s41586-019-0879-y
  11. Lanini S, Milleri S, Andreano E, et al. Safety and serum distribution of anti-SARS-CoV-2 monoclonal antibody MAD0004J08 after intramuscular injection. Nat Commun. 2022;13(1):2263. doi: 10.1038/s41467-022-29909-x EDN: ECONNN
  12. Zurawski DV, McLendon MK. Monoclonal antibodies as an antibacterial approach against bacterial pathogens. Antibiotics (Basel). 2020;9(4):155. doi: 10.3390/antibiotics9040155 EDN: QVMNQX
  13. François B, Jafri HS, Chastre J, et al. Efficacy and safety of suvratoxumab for prevention of Staphylococcus aureus ventilator-associated pneumonia (SAATELLITE): a multicentre, randomised, double-blind, placebo-controlled, parallel-group, phase 2 pilot trial. Lancet Infect Dis. 2021;21(9):1313–1323. doi: 10.1016/S1473-3099(20)30995-6 EDN: DGTUQR
  14. Chastre J, François B, Bourgeois M, et al. Safety, efficacy, and pharmacokinetics of gremubamab (MEDI3902), an anti-Pseudomonas aeruginosa bispecific human monoclonal antibody, in P. aeruginosa-colonised, mechanically ventilated intensive care unit patients: a randomised controlled trial. Crit Care. 2022;26(1):355. doi: 10.1186/s13054-022-04204-9 EDN: CAWTEK
  15. Ali SO, Yu XQ, Robbie GJ, et al. Phase 1 study of MEDI3902, an investigational anti-Pseudomonas aeruginosa PcrV and Psl bispecific human monoclonal antibody, in healthy adults. Clin Microbiol Infect. 2019;25(5):629.e1–629.e6. doi: 10.1016/j.cmi.2018.08.004
  16. Yu L, Shang Z, Jin Q, et al. Antibody-antimicrobial conjugates for combating antibiotic resistance. Adv Healthc Mater. 2023;12(1):e2202207. doi: 10.1002/adhm.202202207 EDN: BQSOVT
  17. Zhou C, Lehar S, Gutierrez J, et al. Pharmacokinetics and pharmacodynamics of DSTA4637A: A novel THIOMAB™ antibody antibiotic conjugate against Staphylococcus aureus in mice. MAbs. 2016;8(8):1612–1619. doi: 10.1080/19420862.2016.1229722
  18. Deng R, Zhou C, Li D, et al. Preclinical and translational pharmacokinetics of a novel THIOMAB™ antibody-antibiotic conjugate against Staphylococcus aureus. MAbs. 2019;11(6):1162–1174. doi: 10.1080/19420862.2019.1627152
  19. Cavaco M, Castanho MARB, Neves V. The use of antibody-antibiotic conjugates to fight bacterial infections. Front Microbiol. 2022;13:835677. doi: 10.3389/fmicb.2022.835677 EDN: HEKPPG
  20. Tvilum A, Johansen MI, Glud LN, et al. Antibody-drug conjugates to treat bacterial biofilms via targeting and extracellular drug release. Adv Sci (Weinh). 2023;10(23):e2301340. doi: 10.1002/advs.202301340 EDN: KHUGNH
  21. Darbandi A, Abdi M, Dashtbin S, et al. Antibody-antibiotic conjugates: a comprehensive review on their therapeutic potentials against bacterial infections. J Clin Lab Anal. 2024;38(10):e25071. doi: 10.1002/jcla.25071 EDN: NXQCIA
  22. Łusiak-Szelachowska M, Międzybrodzki R, Drulis-Kawa Z, et al. Bacteriophages and antibiotic interactions in clinical practice: what we have learned so far. J Biomed Sci. 2022;29(1):23. doi: 10.1186/s12929-022-00806-1 EDN: WKSOBC
  23. Kim P, Sanchez AM, Penke TJR, et al. Safety, pharmacokinetics, and pharmacodynamics of LBP-EC01, a CRISPR-Cas3-enhanced bacteriophage cocktail, in uncomplicated urinary tract infections due to Escherichia coli (ELIMINATE): the randomised, open-label, first part of a two-part phase 2 trial. Lancet Infect Dis. 2024;24(12):1319–1332. doi: 10.1016/S1473-3099(24)00424-9 EDN: CXOLCC
  24. Abaturov AE, Kryuchko TA. Inhibition of bacterial quorum sensing (general concept). Zdorov'e rebenka. 2019;14(1):54–59. doi: 10.22141/2224-0551.14.1.2019.157881 EDN: RQCVHS
  25. Savitskii MV, Moskaleva NE, Zigangirova NA. Experimental pharmacokinetics, metabolism and tissue distribution studies fluorothiazinon, a of novel antivirulence drug. Journal Biomed. 2023;19(1):73–84. doi: 10.33647/2074-5982-19-1-73-84 EDN: RBEKKA
  26. Liu H, Ma J, Yang P, et al. Comparative analysis of biofilm characterization of probiotic Escherichia coli. Front Microbiol. 2024;15:1365562. doi: 10.3389/fmicb.2024.1365562 EDN: VVYCPW
  27. Sarshar M, Behzadi P, Ambrosi C, et al FimH and anti-adhesive therapeutics: a disarming strategy against uropathogens. Antibiotics (Basel). 2020;9(7):397. doi: 10.3390/antibiotics9070397 EDN: MOIMKD
  28. Ala-Jaakkola R, Laitila A, Ouwehand AC, Lehtoranta L. Role of D-mannose in urinary tract infections — a narrative review. Nutr J. 2022;21(1):18. doi: 10.1186/s12937-022-00769-x EDN: WUSFRF
  29. Bondareva NE, Soloveva AV, Sheremet AB, et al. Preventative treatment with Fluorothiazinon suppressed Acinetobacter baumannii-associated septicemia in mice. J Antibiot (Tokyo). 2022;75(3):155–163. doi: 10.1038/s41429-022-00504-y EDN: DEMGBU
  30. Koroleva EA, Soloveva AV, Morgunova EY, et al. Fluorothiazinon inhibits the virulence factors of uropathogenic Escherichia coli involved in the development of urinary tract infection. J Antibiot (Tokyo). 2023;76(5):279–290. doi: 10.1038/s41429-023-00602-5 EDN: WJNICV
  31. Tsarenko SV, Zigangirova NA, Soloveva AV, et al. A novel antivirulent compound fluorothiazinone inhibits Klebsiella pneumoniae biofilm in vitro and suppresses model pneumonia. J Antibiot (Tokyo). 2023;76(7):397–405. doi: 10.1038/s41429-023-00621-2 EDN: XJRTTK
  32. Zigangirova NA, Nesterenko LN, Sheremet AB, et al. Fluorothiazinon, a small-molecular inhibitor of T3SS, suppresses salmonella oral infection in mice. J Antibiot (Tokyo). 2021;74(4):244–254. doi: 10.1038/s41429-020-00396-w EDN: AEQAFN
  33. Iksanova AM, Arzumanian VG, Konanykhina SY, Samoylikov PV. Antimicrobial peptides and proteins in human biological fluids. Microbiology Independent Research Journal. 2022;9(1):37–55. doi: 10.18527/2500-2236-2022-9-1-37-55 EDN: OSJIOH
  34. Mishra R, Panda AK, De Mandal S, et al. Natural anti-biofilm agents: strategies to control biofilm-forming pathogens. Front Microbiol. 2020;11:566325. doi: 10.3389/fmicb.2020.566325 EDN: BUYYLC
  35. Bucataru C, Ciobanasu C. Antimicrobial peptides: Opportunities and challenges in overcoming resistance. Microbiol Res. 2024;286:127822. doi: 10.1016/j.micres.2024.127822 EDN: NXIJGX
  36. Mangino JE, Firstenberg MS, Milewski RKC, et al. Exeporfinium chloride (XF-73) nasal gel dosed over 24 hours prior to surgery significantly reduced Staphylococcus aureus nasal carriage in cardiac surgery patients: Safety and efficacy results from a randomized placebo-controlled phase 2 study. Infect Control Hosp Epidemiol. 2023;44(7):1171–1173. doi: 10.1017/ice.2023.17 EDN: SMGADH
  37. Rhys-Williams W, Galvin HM, Love WG. Screening of the novel antimicrobial drug, XF-73, against 2,527 Staphylococcus species clinical isolates. Front Cell Infect Microbiol. 2023;13:1264456. doi: 10.3389/fcimb.2023.1264456 EDN: OJFJBM
  38. Niemeyer-van der Kolk T, Assil S, Buters TP, et al. Omiganan enhances imiquimod-induced inflammatory responses in skin of healthy volunteers. Clin Transl Sci. 2020;13(3):573–579. doi: 10.1111/cts.12741 EDN: YDCWQM
  39. Alshrari AS, Hudu SA, Elmigdadi F, Imran M. The urgent threat of Clostridioides difficile infection: a glimpse of the drugs of the future, with related patents and prospects. Biomedicines. 2023;11(2):426. doi: 10.3390/biomedicines11020426 EDN: QOXVMO
  40. Lima WG, Batista Filho FL, Lima IP, et al. Antibacterial, anti-biofilm, and anti-adhesive activities of melittin, a honeybee venom-derived peptide, against quinolone-resistant uropathogenic Escherichia coli (UPEC). Nat Prod Res. 2022;36(24):6381–6388. doi: 10.1080/14786419.2022.2032047 EDN: MWCVOM
  41. Yang H, Ma R, Chen J, et al. Discovery of melittin as triple-action agent: broad-spectrum antibacterial, anti-biofilm, and potential anti-quorum sensing activities. Molecules. 2024;29(3):558. doi: 10.3390/molecules29030558 EDN: JPTBEQ
  42. Mirzaei R, Alikhani MY, Arciola CR, et al. Prevention, inhibition, and degradation effects of melittin alone and in combination with vancomycin and rifampin against strong biofilm producer strains of methicillin-resistant Staphylococcus epidermidis. Biomed Pharmacother. 2022;147:112670. doi: 10.1016/j.biopha.2022.112670 EDN: VDKKDM
  43. Håkansson J, Ringstad L, Umerska A, et al. Characterization of the in vitro, ex vivo, and in vivo efficacy of the antimicrobial peptide DPK-060 Used for topical treatment. Front Cell Infect Microbiol. 2019;9:174. doi: 10.3389/fcimb.2019.00174
  44. Kaplan CW, Sim JH, Shah KR, et al. Selective membrane disruption: mode of action of C16G2, a specifically targeted antimicrobial peptide. Antimicrob Agents Chemother. 2011;55(7):3446–3452. doi: 10.1128/AAC.00342-11
  45. Safronova VN, Bolosov IA, Panteleev PV, et al. Therapeutic potential and application prospects of antimicrobial peptides in the era of global spread of antibiotic resistance. Bioorganicheskaya khimiya. 2023;49(3):243–258. doi: 10.31857/S0132342323030181 EDN: PEADRY
  46. Zhang K, Yang N, Teng D, et al. Expression and characterization of the new antimicrobial peptide AP138L-arg26 anti Staphylococcus aureus. Appl Microbiol Biotechnol. 2024;108(1):111. doi: 10.1007/s00253-023-12947-w EDN: IRZMCX
  47. Wu J, Zhou X, Chen Q, et al. Defensins as a promising class of tick antimicrobial peptides: a scoping review. Infect Dis Poverty. 2022;11(1):71. doi: 10.1186/s40249-022-00996-8 EDN: LTKQBN
  48. Burgin DJ, Liu R, Hsieh RC, et al. Investigational agents for the treatment of methicillin-resistant Staphylococcus aureus (MRSA) bacteremia: progress in clinical trials. Expert Opin Investig Drugs. 2022;31(3):263–279. doi: 10.1080/13543784.2022.2040015 EDN: LXMAUO
  49. Ju M, Joseph T, Hansanant N, et al. Evaluation of analogs of mutacin 1140 in systemic and cutaneous methicillin-resistant Staphylococcus aureus infection models in mice. Front Microbiol. 2022;13:1067410. doi: 10.3389/fmicb.2022.1067410 EDN: BDBDOS
  50. Andreev VA, Stetsiouk OU, Andreeva IV. Probiotics: controversial issues. Clinical Microbiology and Antimicrobial Chemotherapy. 2022;24(4):345–360. doi: 10.36488/cmac.2022.4.345-360 EDN: WFLVRE
  51. Dsouza M, Menon R, Crossette E, et al. Colonization of the live biotherapeutic product VE303 and modulation of the microbiota and metabolites in healthy volunteers. Cell Host Microbe. 2022;30(4):583–598.e8. doi: 10.1016/j.chom.2022.03.016 EDN: FTLGBK
  52. Strum WB, Boland CR. Advances in acute and chronic pancreatitis. World J Gastroenterol. 2023;29(7):1194–1201. doi: 10.3748/wjg.v29.i7.1194 EDN: YBECDT
  53. Kao D, Wong K, Franz R, et al. The effect of a microbial ecosystem therapeutic (MET-2) on recurrent Clostridioides difficile infection: a phase 1, open-label, single-group trial. Lancet Gastroenterol Hepatol. 2021;6(4):282–291. doi: 10.1016/S2468-1253(21)00007-8 EDN: WHTFRL
  54. Roberts T, Kokai-Kun JF, Coughlin O, et al. Tolerability and pharmacokinetics of SYN-004, an orally administered β-lactamase for the prevention of clostridium difficile-associated disease and antibiotic-associated diarrhea, in two phase 1 studies. Clin Drug Investig. 2016;36(9):725–734. doi: 10.1007/s40261-016-0420-0
  55. Kokai-Kun JF, Roberts T, Coughlin O, et al. Use of ribaxamase (SYN-004), a β-lactamase, to prevent Clostridium difficile infection in β-lactam-treated patients: a double-blind, phase 2b, randomised placebo-controlled trial. Lancet Infect Dis. 2019;19(5):487–496. doi: 10.1016/S1473-3099(18)30731-X
  56. Wallis RS, O'Garra A, Sher A, Wack A. Host-directed immunotherapy of viral and bacterial infections: past, present and future. Nat Rev Immunol. 2023;23(2):121–133. doi: 10.1038/s41577-022-00734-z EDN: ALCZEI
  57. Strong EJ, Lee S. Targeting autophagy as a strategy for developing new vaccines and host-directed therapeutics against mycobacteria. Front Microbiol. 2021;11:614313. doi: 10.3389/fmicb.2020.614313 EDN: CHQWRW
  58. Subbian S, Tsenova L, Holloway J, et al. Adjunctive phosphodiesterase-4 inhibitor therapy improves antibiotic response to pulmonary tuberculosis in a rabbit model. EBioMedicine. 2016;4:104–114. doi: 10.1016/j.ebiom.2016.01.015
  59. Mi J, Wu X, Liang J. The advances in adjuvant therapy for tuberculosis with immunoregulatory compounds. Front Microbiol. 2024;15:1380848. doi: 10.3389/fmicb.2024.1380848 EDN: GVRZQF
  60. Tkachuk AP, Gushchin VA, Potapov VD, et al. Multi-subunit BCG booster vaccine GamTBvac: Assessment of immunogenicity and protective efficacy in murine and guinea pig TB models. PLoS One. 2017;12(4):e0176784. doi: 10.1371/journal.pone.0176784 EDN: XNFCKE
  61. Kleymenov DA, Mazunina EP, Lunin VG, et al. Immunological memory formed in response to administration of GamTBvac recombinant tuberculosis vaccine candidate: clinical trials in healthy volunteers. Bulletin of Russian State Medical University. 2017;(5):29–37. EDN: ZVZDQJ
  62. Wang L, Hu C, Shao L. The antimicrobial activity of nanoparticles: present situation and prospects for the future. Int J Nanomedicine. 2017;12:1227–1249. doi: 10.2147/IJN.S121956 EDN: WLABYY
  63. Mondal SK, Chakraborty S, Manna S, Mandal SM. Antimicrobial nanoparticles: current landscape and future challenges. RSC Pharm. 2024;1:388. doi: 10.1039/d4pm00032c
  64. McShan D, Zhang Y, Deng H, et al. Synergistic antibacterial effect of silver nanoparticles combined with ineffective antibiotics on drug resistant salmonella typhimurium DT104. J Environ Sci Health C Environ Carcinog Ecotoxicol Rev. 2015;33(3):369–384. doi: 10.1080/10590501.2015.1055165 EDN: XYOFIF
  65. Abo-Shama UH, El-Gendy H, Mousa WS, et al. Synergistic and antagonistic effects of metal nanoparticles in combination with antibiotics against some reference strains of pathogenic microorganisms. Infect Drug Resist. 2020;13:351–362. doi: 10.2147/IDR.S234425 EDN: JIPQHG
  66. Brown AN, Smith K, Samuels TA, et al. Nanoparticles functionalized with ampicillin destroy multiple-antibiotic-resistant isolates of Pseudomonas aeruginosa and Enterobacter aerogenes and methicillin-resistant Staphylococcus aureus. Appl Environ Microbiol. 2012;78(8):2768–2774. doi: 10.1128/aem.06513-11 EDN: PHSIHJ
  67. Naqvi SS, Anwer H, Siddiqui A, Zohra RR. Novel synthesis of maltol capped copper nanoparticles and their synergistic antibacterial activity with antibiotics. Plasmonics. 2021;16(6):1–14. doi: 10.1007/s11468-021-01452-3 EDN: FLKRHN
  68. Faisal S, Al-Radadi NS, Jan H, et al. Curcuma longa Mediated synthesis of copper oxide, nickel oxide and Cu-Ni bimetallic hybrid nanoparticles: Characterization and evaluation for antimicrobial, anti-parasitic and cytotoxic potentials. Coatings. 2021;11(7):849. doi: 10.3390/coatings11070849 EDN: FTPGHF
  69. Hamid OS, Mahmood SS. The synergistic effect of gold nanoparticle loaded with ceftazidium antibiotic against multidrug ersistance pseudomonas aeruginosa. Iraqi Journal of Agricultural Sciences. 2021;52(4):828–835. doi: 10.36103/ijas.v52i4.1391
  70. Abdullah, Jamil T, Atif M, et al. Recent advances in the development of metal/metal oxide nanoparticle and antibiotic conjugates (MNP-Antibiotics) to address antibiotic resistance: review and perspective. Int J Mol Sci. 2024;25(16):8915. doi: 10.3390/ijms25168915 EDN: ENXFUN
  71. Yu R, Chen H, He J, et al. Engineering antimicrobial metal-phenolic network nanoparticles with high biocompatibility for wound healing. Adv Mater. 2024;36(6):e2307680. doi: 10.1002/adma.202307680 EDN: DZXMBK
  72. Gbian DL, Omri A. Lipid-based drug delivery systems for diseases managements. Biomedicines. 2022;10(9):2137. doi: 10.3390/biomedicines10092137 EDN: IBMVEU
  73. Zhang Q, Wu W, Zhang J, Xia X. Antimicrobial lipids in nano-carriers for antibacterial delivery. J Drug Target. 2020;28(3):271–281. doi: 10.1080/1061186X.2019.1681434
  74. Azeredo da Silveira S, Shorr AF. Critical parameters for the development of novel therapies for severe and resistant infections-a case study on CAL02, a non-traditional broad-spectrum anti-virulence drug. Antibiotics (Basel). 2020;9(2):94. doi: 10.3390/antibiotics9020094 EDN: OVTRNS
  75. Laterre PF, Colin G, Dequin PF, et al. CAL02, a novel antitoxin liposomal agent, in severe pneumococcal pneumonia: a first-in-human, double-blind, placebo-controlled, randomised trial. Lancet Infect Dis. 2019;19(6):620–630. doi: 10.1016/S1473-3099(18)30805-3
  76. Sellarès-Nadal J, Burgos J, Falcó V, Almirante B. Investigational and experimental drugs for community-acquired pneumonia: the current evidence. J Exp Pharmacol. 2020;12:529–538. doi: 10.2147/JEP.S259286 EDN: ULSHOY

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Appendix 1. Alternative antimicrobial agents at various stages of pharmaceutical development
Download (182KB)

Copyright (c) 2025 Eco-Vector

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
 


Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».