Обзор альтернативных средств антимикробной терапии
- Авторы: Романова С.В.1, Цыпкина А.В.1, Субботина Т.И.1, Юдин С.М.1, Кескинов А.А.1, Макаров В.В.1, Загайнова А.В.1, Романов Б.К.2
-
Учреждения:
- Центр стратегического планирования и управления медико-биологическими рисками здоровью Федерального медико-биологического агентства
- Российский национальный исследовательский медицинский университет имени Н.И. Пирогова
- Выпуск: Том 31, № 3 (2025)
- Страницы: 236-249
- Раздел: Обзоры
- URL: https://bakhtiniada.ru/0869-2106/article/view/313399
- DOI: https://doi.org/10.17816/medjrf678618
- EDN: https://elibrary.ru/ZMZTNL
- ID: 313399
Цитировать
Аннотация
Резистентность к противомикробным препаратам — одна из самых сложных проблем мирового здравоохранения. В настоящее время наблюдается рост числа антибиотикорезистентных штаммов бактерий на грани экономической и социальной катастрофы, в связи с чем необходим поиск альтернативных эффективных подходов к антимикробной терапии и профилактике. Наиболее перспективными альтернативными средствами антимикробной терапии являются антитела; бактериофаги и ферменты, полученные из бактериофагов; антивирулентные агенты; пробиотики и микробиом-модулирующие вещества; иммуностимуляторы; антимикробные пептиды, защищающие хозяина; наночастицы и липосомы и т. д. Комплексный подход к лечению инфекций без усугубления проблемы устойчивости к противомикробным препаратам предполагает сочетание этих альтернативных методов лечения со стратегиями сохранения эффективности существующих противомикробных средств.
Цель обзора — обобщить информацию о причинах и механизмах, лежащих в основе развития резистентности; ограничениях стандартных методов лечения; альтернативных методах лечения, способных бороться с развитием резистентности, их преимуществах и недостатках; а также о будущих задачах. Приведены сводные данные по альтернативным средствам антимикробной терапии, находящимся на разных этапах фармацевтической разработки.
Полный текст
Открыть статью на сайте журналаОб авторах
Светлана Валентиновна Романова
Центр стратегического планирования и управления медико-биологическими рисками здоровью Федерального медико-биологического агентства
Email: sromanova@cspfmba.ru
ORCID iD: 0009-0005-3367-8883
Россия, Москва
Анастасия Валерьевна Цыпкина
Центр стратегического планирования и управления медико-биологическими рисками здоровью Федерального медико-биологического агентства
Email: atsypkina@cspfmba.ru
ORCID iD: 0000-0001-6117-0984
SPIN-код: 8311-3717
канд. фармацевт. наук
Россия, МоскваТатьяна Игоревна Субботина
Центр стратегического планирования и управления медико-биологическими рисками здоровью Федерального медико-биологического агентства
Автор, ответственный за переписку.
Email: tsubbotina@cspfmba.ru
ORCID iD: 0009-0008-5175-4386
Россия, Москва
Сергей Михайлович Юдин
Центр стратегического планирования и управления медико-биологическими рисками здоровью Федерального медико-биологического агентства
Email: Yudin@cspfmba.ru
ORCID iD: 0000-0002-7942-8004
д-р мед. наук, профессор
Россия, МоскваАнтон Артурович Кескинов
Центр стратегического планирования и управления медико-биологическими рисками здоровью Федерального медико-биологического агентства
Email: Keskinov@cspfmba.ru
ORCID iD: 0000-0001-7378-983X
SPIN-код: 7178-5020
канд. мед. наук
Россия, МоскваВалентин Валентинович Макаров
Центр стратегического планирования и управления медико-биологическими рисками здоровью Федерального медико-биологического агентства
Email: Makarov@cspfmba.ru
ORCID iD: 0000-0002-1907-0098
SPIN-код: 7842-8808
канд. биол. наук
Россия, МоскваАнжелика Владимировна Загайнова
Центр стратегического планирования и управления медико-биологическими рисками здоровью Федерального медико-биологического агентства
Email: azagaynova@cspfmba.ru
ORCID iD: 0000-0003-4772-9686
SPIN-код: 6642-7819
канд. биол. наук
Россия, МоскваБорис Константинович Романов
Российский национальный исследовательский медицинский университет имени Н.И. Пирогова
Email: Romanov_BK@rsmu.ru
ORCID iD: 0000-0001-5429-9528
SPIN-код: 8453-9166
д-р мед. наук, доцент
Россия, МоскваСписок литературы
- Dzhioev YP, Zlobin VI, Salovarova VP, et al. Analysis of the "superbacteria" issue and contemporary approaches to its solution. Proceedings of Universities. Applied Chemistry and Biotechnology. 2019;9(4):665–678. doi: 10.21285/2227-2925-2019-9-4-665-678 EDN: JYFFNC
- Shafaati M, Salehi M, Zare M. The twin challenges of longevity and climate change in controlling antimicrobial resistance. J Antibiot (Tokyo). 2024;77(7):399–402. doi: 10.1038/s41429-024-00730-6 EDN: ZNOYWS
- Nazarov PA. Alternatives to antibiotics: phage lytic enzymes and phage therapy. Bulletin of Russian State Medical University. 2018;(1):5–15. doi: 10.24075/vrgmu.2018.002 EDN: XQWGXR
- Neubauer D, Jaśkiewicz M, Migoń D, et al. Retro analog concept: comparative study on physico-chemical and biological properties of selected antimicrobial peptides. Amino Acids. 2017;49(10):1755–1771. doi: 10.1007/s00726-017-2473-7 EDN: HHWFOV
- Tsepelev VY, Lazareva IA, Gunov SV. Antimicrobial peptides — a modern alternative to antibiotics. Modern Problems of Science and Education. 2023;(3):104. doi: 10.17513/spno.32620 EDN: JDIGZA
- Kohanski MA, Dwyer DJ, Collins JJ. How antibiotics kill bacteria: from targets to networks. Nat Rev Microbiol. 2010;8(6):423–435. doi: 10.1038/nrmicro2333
- Lewis K. Platforms for antibiotic discovery. Nat Rev Drug Discov. 2013;12(5):371–387. doi: 10.1038/nrd3975 EDN: YDTISH
- Czaplewski L, Bax R, Clokie M, et al. Alternatives to antibiotics-a pipeline portfolio review. Lancet Infect Dis. 2016;16(2):239–251. doi: 10.1016/S1473-3099(15)00466-1
- La Guidara C, Adamo R, Sala C, Micoli F. Vaccines and monoclonal antibodies as alternative strategies to antibiotics to fight antimicrobial resistance. Int J Mol Sci. 2024;25(10):5487. doi: 10.3390/ijms25105487 EDN: ETJEHY
- Briney B, Inderbitzin A, Joyce C, Burton DR. Commonality despite exceptional diversity in the baseline human antibody repertoire. Nature. 2019;566(7744):393–397. doi: 10.1038/s41586-019-0879-y
- Lanini S, Milleri S, Andreano E, et al. Safety and serum distribution of anti-SARS-CoV-2 monoclonal antibody MAD0004J08 after intramuscular injection. Nat Commun. 2022;13(1):2263. doi: 10.1038/s41467-022-29909-x EDN: ECONNN
- Zurawski DV, McLendon MK. Monoclonal antibodies as an antibacterial approach against bacterial pathogens. Antibiotics (Basel). 2020;9(4):155. doi: 10.3390/antibiotics9040155 EDN: QVMNQX
- François B, Jafri HS, Chastre J, et al. Efficacy and safety of suvratoxumab for prevention of Staphylococcus aureus ventilator-associated pneumonia (SAATELLITE): a multicentre, randomised, double-blind, placebo-controlled, parallel-group, phase 2 pilot trial. Lancet Infect Dis. 2021;21(9):1313–1323. doi: 10.1016/S1473-3099(20)30995-6 EDN: DGTUQR
- Chastre J, François B, Bourgeois M, et al. Safety, efficacy, and pharmacokinetics of gremubamab (MEDI3902), an anti-Pseudomonas aeruginosa bispecific human monoclonal antibody, in P. aeruginosa-colonised, mechanically ventilated intensive care unit patients: a randomised controlled trial. Crit Care. 2022;26(1):355. doi: 10.1186/s13054-022-04204-9 EDN: CAWTEK
- Ali SO, Yu XQ, Robbie GJ, et al. Phase 1 study of MEDI3902, an investigational anti-Pseudomonas aeruginosa PcrV and Psl bispecific human monoclonal antibody, in healthy adults. Clin Microbiol Infect. 2019;25(5):629.e1–629.e6. doi: 10.1016/j.cmi.2018.08.004
- Yu L, Shang Z, Jin Q, et al. Antibody-antimicrobial conjugates for combating antibiotic resistance. Adv Healthc Mater. 2023;12(1):e2202207. doi: 10.1002/adhm.202202207 EDN: BQSOVT
- Zhou C, Lehar S, Gutierrez J, et al. Pharmacokinetics and pharmacodynamics of DSTA4637A: A novel THIOMAB™ antibody antibiotic conjugate against Staphylococcus aureus in mice. MAbs. 2016;8(8):1612–1619. doi: 10.1080/19420862.2016.1229722
- Deng R, Zhou C, Li D, et al. Preclinical and translational pharmacokinetics of a novel THIOMAB™ antibody-antibiotic conjugate against Staphylococcus aureus. MAbs. 2019;11(6):1162–1174. doi: 10.1080/19420862.2019.1627152
- Cavaco M, Castanho MARB, Neves V. The use of antibody-antibiotic conjugates to fight bacterial infections. Front Microbiol. 2022;13:835677. doi: 10.3389/fmicb.2022.835677 EDN: HEKPPG
- Tvilum A, Johansen MI, Glud LN, et al. Antibody-drug conjugates to treat bacterial biofilms via targeting and extracellular drug release. Adv Sci (Weinh). 2023;10(23):e2301340. doi: 10.1002/advs.202301340 EDN: KHUGNH
- Darbandi A, Abdi M, Dashtbin S, et al. Antibody-antibiotic conjugates: a comprehensive review on their therapeutic potentials against bacterial infections. J Clin Lab Anal. 2024;38(10):e25071. doi: 10.1002/jcla.25071 EDN: NXQCIA
- Łusiak-Szelachowska M, Międzybrodzki R, Drulis-Kawa Z, et al. Bacteriophages and antibiotic interactions in clinical practice: what we have learned so far. J Biomed Sci. 2022;29(1):23. doi: 10.1186/s12929-022-00806-1 EDN: WKSOBC
- Kim P, Sanchez AM, Penke TJR, et al. Safety, pharmacokinetics, and pharmacodynamics of LBP-EC01, a CRISPR-Cas3-enhanced bacteriophage cocktail, in uncomplicated urinary tract infections due to Escherichia coli (ELIMINATE): the randomised, open-label, first part of a two-part phase 2 trial. Lancet Infect Dis. 2024;24(12):1319–1332. doi: 10.1016/S1473-3099(24)00424-9 EDN: CXOLCC
- Abaturov AE, Kryuchko TA. Inhibition of bacterial quorum sensing (general concept). Zdorov'e rebenka. 2019;14(1):54–59. doi: 10.22141/2224-0551.14.1.2019.157881 EDN: RQCVHS
- Savitskii MV, Moskaleva NE, Zigangirova NA. Experimental pharmacokinetics, metabolism and tissue distribution studies fluorothiazinon, a of novel antivirulence drug. Journal Biomed. 2023;19(1):73–84. doi: 10.33647/2074-5982-19-1-73-84 EDN: RBEKKA
- Liu H, Ma J, Yang P, et al. Comparative analysis of biofilm characterization of probiotic Escherichia coli. Front Microbiol. 2024;15:1365562. doi: 10.3389/fmicb.2024.1365562 EDN: VVYCPW
- Sarshar M, Behzadi P, Ambrosi C, et al FimH and anti-adhesive therapeutics: a disarming strategy against uropathogens. Antibiotics (Basel). 2020;9(7):397. doi: 10.3390/antibiotics9070397 EDN: MOIMKD
- Ala-Jaakkola R, Laitila A, Ouwehand AC, Lehtoranta L. Role of D-mannose in urinary tract infections — a narrative review. Nutr J. 2022;21(1):18. doi: 10.1186/s12937-022-00769-x EDN: WUSFRF
- Bondareva NE, Soloveva AV, Sheremet AB, et al. Preventative treatment with Fluorothiazinon suppressed Acinetobacter baumannii-associated septicemia in mice. J Antibiot (Tokyo). 2022;75(3):155–163. doi: 10.1038/s41429-022-00504-y EDN: DEMGBU
- Koroleva EA, Soloveva AV, Morgunova EY, et al. Fluorothiazinon inhibits the virulence factors of uropathogenic Escherichia coli involved in the development of urinary tract infection. J Antibiot (Tokyo). 2023;76(5):279–290. doi: 10.1038/s41429-023-00602-5 EDN: WJNICV
- Tsarenko SV, Zigangirova NA, Soloveva AV, et al. A novel antivirulent compound fluorothiazinone inhibits Klebsiella pneumoniae biofilm in vitro and suppresses model pneumonia. J Antibiot (Tokyo). 2023;76(7):397–405. doi: 10.1038/s41429-023-00621-2 EDN: XJRTTK
- Zigangirova NA, Nesterenko LN, Sheremet AB, et al. Fluorothiazinon, a small-molecular inhibitor of T3SS, suppresses salmonella oral infection in mice. J Antibiot (Tokyo). 2021;74(4):244–254. doi: 10.1038/s41429-020-00396-w EDN: AEQAFN
- Iksanova AM, Arzumanian VG, Konanykhina SY, Samoylikov PV. Antimicrobial peptides and proteins in human biological fluids. Microbiology Independent Research Journal. 2022;9(1):37–55. doi: 10.18527/2500-2236-2022-9-1-37-55 EDN: OSJIOH
- Mishra R, Panda AK, De Mandal S, et al. Natural anti-biofilm agents: strategies to control biofilm-forming pathogens. Front Microbiol. 2020;11:566325. doi: 10.3389/fmicb.2020.566325 EDN: BUYYLC
- Bucataru C, Ciobanasu C. Antimicrobial peptides: Opportunities and challenges in overcoming resistance. Microbiol Res. 2024;286:127822. doi: 10.1016/j.micres.2024.127822 EDN: NXIJGX
- Mangino JE, Firstenberg MS, Milewski RKC, et al. Exeporfinium chloride (XF-73) nasal gel dosed over 24 hours prior to surgery significantly reduced Staphylococcus aureus nasal carriage in cardiac surgery patients: Safety and efficacy results from a randomized placebo-controlled phase 2 study. Infect Control Hosp Epidemiol. 2023;44(7):1171–1173. doi: 10.1017/ice.2023.17 EDN: SMGADH
- Rhys-Williams W, Galvin HM, Love WG. Screening of the novel antimicrobial drug, XF-73, against 2,527 Staphylococcus species clinical isolates. Front Cell Infect Microbiol. 2023;13:1264456. doi: 10.3389/fcimb.2023.1264456 EDN: OJFJBM
- Niemeyer-van der Kolk T, Assil S, Buters TP, et al. Omiganan enhances imiquimod-induced inflammatory responses in skin of healthy volunteers. Clin Transl Sci. 2020;13(3):573–579. doi: 10.1111/cts.12741 EDN: YDCWQM
- Alshrari AS, Hudu SA, Elmigdadi F, Imran M. The urgent threat of Clostridioides difficile infection: a glimpse of the drugs of the future, with related patents and prospects. Biomedicines. 2023;11(2):426. doi: 10.3390/biomedicines11020426 EDN: QOXVMO
- Lima WG, Batista Filho FL, Lima IP, et al. Antibacterial, anti-biofilm, and anti-adhesive activities of melittin, a honeybee venom-derived peptide, against quinolone-resistant uropathogenic Escherichia coli (UPEC). Nat Prod Res. 2022;36(24):6381–6388. doi: 10.1080/14786419.2022.2032047 EDN: MWCVOM
- Yang H, Ma R, Chen J, et al. Discovery of melittin as triple-action agent: broad-spectrum antibacterial, anti-biofilm, and potential anti-quorum sensing activities. Molecules. 2024;29(3):558. doi: 10.3390/molecules29030558 EDN: JPTBEQ
- Mirzaei R, Alikhani MY, Arciola CR, et al. Prevention, inhibition, and degradation effects of melittin alone and in combination with vancomycin and rifampin against strong biofilm producer strains of methicillin-resistant Staphylococcus epidermidis. Biomed Pharmacother. 2022;147:112670. doi: 10.1016/j.biopha.2022.112670 EDN: VDKKDM
- Håkansson J, Ringstad L, Umerska A, et al. Characterization of the in vitro, ex vivo, and in vivo efficacy of the antimicrobial peptide DPK-060 Used for topical treatment. Front Cell Infect Microbiol. 2019;9:174. doi: 10.3389/fcimb.2019.00174
- Kaplan CW, Sim JH, Shah KR, et al. Selective membrane disruption: mode of action of C16G2, a specifically targeted antimicrobial peptide. Antimicrob Agents Chemother. 2011;55(7):3446–3452. doi: 10.1128/AAC.00342-11
- Safronova VN, Bolosov IA, Panteleev PV, et al. Therapeutic potential and application prospects of antimicrobial peptides in the era of global spread of antibiotic resistance. Bioorganicheskaya khimiya. 2023;49(3):243–258. doi: 10.31857/S0132342323030181 EDN: PEADRY
- Zhang K, Yang N, Teng D, et al. Expression and characterization of the new antimicrobial peptide AP138L-arg26 anti Staphylococcus aureus. Appl Microbiol Biotechnol. 2024;108(1):111. doi: 10.1007/s00253-023-12947-w EDN: IRZMCX
- Wu J, Zhou X, Chen Q, et al. Defensins as a promising class of tick antimicrobial peptides: a scoping review. Infect Dis Poverty. 2022;11(1):71. doi: 10.1186/s40249-022-00996-8 EDN: LTKQBN
- Burgin DJ, Liu R, Hsieh RC, et al. Investigational agents for the treatment of methicillin-resistant Staphylococcus aureus (MRSA) bacteremia: progress in clinical trials. Expert Opin Investig Drugs. 2022;31(3):263–279. doi: 10.1080/13543784.2022.2040015 EDN: LXMAUO
- Ju M, Joseph T, Hansanant N, et al. Evaluation of analogs of mutacin 1140 in systemic and cutaneous methicillin-resistant Staphylococcus aureus infection models in mice. Front Microbiol. 2022;13:1067410. doi: 10.3389/fmicb.2022.1067410 EDN: BDBDOS
- Andreev VA, Stetsiouk OU, Andreeva IV. Probiotics: controversial issues. Clinical Microbiology and Antimicrobial Chemotherapy. 2022;24(4):345–360. doi: 10.36488/cmac.2022.4.345-360 EDN: WFLVRE
- Dsouza M, Menon R, Crossette E, et al. Colonization of the live biotherapeutic product VE303 and modulation of the microbiota and metabolites in healthy volunteers. Cell Host Microbe. 2022;30(4):583–598.e8. doi: 10.1016/j.chom.2022.03.016 EDN: FTLGBK
- Strum WB, Boland CR. Advances in acute and chronic pancreatitis. World J Gastroenterol. 2023;29(7):1194–1201. doi: 10.3748/wjg.v29.i7.1194 EDN: YBECDT
- Kao D, Wong K, Franz R, et al. The effect of a microbial ecosystem therapeutic (MET-2) on recurrent Clostridioides difficile infection: a phase 1, open-label, single-group trial. Lancet Gastroenterol Hepatol. 2021;6(4):282–291. doi: 10.1016/S2468-1253(21)00007-8 EDN: WHTFRL
- Roberts T, Kokai-Kun JF, Coughlin O, et al. Tolerability and pharmacokinetics of SYN-004, an orally administered β-lactamase for the prevention of clostridium difficile-associated disease and antibiotic-associated diarrhea, in two phase 1 studies. Clin Drug Investig. 2016;36(9):725–734. doi: 10.1007/s40261-016-0420-0
- Kokai-Kun JF, Roberts T, Coughlin O, et al. Use of ribaxamase (SYN-004), a β-lactamase, to prevent Clostridium difficile infection in β-lactam-treated patients: a double-blind, phase 2b, randomised placebo-controlled trial. Lancet Infect Dis. 2019;19(5):487–496. doi: 10.1016/S1473-3099(18)30731-X
- Wallis RS, O'Garra A, Sher A, Wack A. Host-directed immunotherapy of viral and bacterial infections: past, present and future. Nat Rev Immunol. 2023;23(2):121–133. doi: 10.1038/s41577-022-00734-z EDN: ALCZEI
- Strong EJ, Lee S. Targeting autophagy as a strategy for developing new vaccines and host-directed therapeutics against mycobacteria. Front Microbiol. 2021;11:614313. doi: 10.3389/fmicb.2020.614313 EDN: CHQWRW
- Subbian S, Tsenova L, Holloway J, et al. Adjunctive phosphodiesterase-4 inhibitor therapy improves antibiotic response to pulmonary tuberculosis in a rabbit model. EBioMedicine. 2016;4:104–114. doi: 10.1016/j.ebiom.2016.01.015
- Mi J, Wu X, Liang J. The advances in adjuvant therapy for tuberculosis with immunoregulatory compounds. Front Microbiol. 2024;15:1380848. doi: 10.3389/fmicb.2024.1380848 EDN: GVRZQF
- Tkachuk AP, Gushchin VA, Potapov VD, et al. Multi-subunit BCG booster vaccine GamTBvac: Assessment of immunogenicity and protective efficacy in murine and guinea pig TB models. PLoS One. 2017;12(4):e0176784. doi: 10.1371/journal.pone.0176784 EDN: XNFCKE
- Kleymenov DA, Mazunina EP, Lunin VG, et al. Immunological memory formed in response to administration of GamTBvac recombinant tuberculosis vaccine candidate: clinical trials in healthy volunteers. Bulletin of Russian State Medical University. 2017;(5):29–37. EDN: ZVZDQJ
- Wang L, Hu C, Shao L. The antimicrobial activity of nanoparticles: present situation and prospects for the future. Int J Nanomedicine. 2017;12:1227–1249. doi: 10.2147/IJN.S121956 EDN: WLABYY
- Mondal SK, Chakraborty S, Manna S, Mandal SM. Antimicrobial nanoparticles: current landscape and future challenges. RSC Pharm. 2024;1:388. doi: 10.1039/d4pm00032c
- McShan D, Zhang Y, Deng H, et al. Synergistic antibacterial effect of silver nanoparticles combined with ineffective antibiotics on drug resistant salmonella typhimurium DT104. J Environ Sci Health C Environ Carcinog Ecotoxicol Rev. 2015;33(3):369–384. doi: 10.1080/10590501.2015.1055165 EDN: XYOFIF
- Abo-Shama UH, El-Gendy H, Mousa WS, et al. Synergistic and antagonistic effects of metal nanoparticles in combination with antibiotics against some reference strains of pathogenic microorganisms. Infect Drug Resist. 2020;13:351–362. doi: 10.2147/IDR.S234425 EDN: JIPQHG
- Brown AN, Smith K, Samuels TA, et al. Nanoparticles functionalized with ampicillin destroy multiple-antibiotic-resistant isolates of Pseudomonas aeruginosa and Enterobacter aerogenes and methicillin-resistant Staphylococcus aureus. Appl Environ Microbiol. 2012;78(8):2768–2774. doi: 10.1128/aem.06513-11 EDN: PHSIHJ
- Naqvi SS, Anwer H, Siddiqui A, Zohra RR. Novel synthesis of maltol capped copper nanoparticles and their synergistic antibacterial activity with antibiotics. Plasmonics. 2021;16(6):1–14. doi: 10.1007/s11468-021-01452-3 EDN: FLKRHN
- Faisal S, Al-Radadi NS, Jan H, et al. Curcuma longa Mediated synthesis of copper oxide, nickel oxide and Cu-Ni bimetallic hybrid nanoparticles: Characterization and evaluation for antimicrobial, anti-parasitic and cytotoxic potentials. Coatings. 2021;11(7):849. doi: 10.3390/coatings11070849 EDN: FTPGHF
- Hamid OS, Mahmood SS. The synergistic effect of gold nanoparticle loaded with ceftazidium antibiotic against multidrug ersistance pseudomonas aeruginosa. Iraqi Journal of Agricultural Sciences. 2021;52(4):828–835. doi: 10.36103/ijas.v52i4.1391
- Abdullah, Jamil T, Atif M, et al. Recent advances in the development of metal/metal oxide nanoparticle and antibiotic conjugates (MNP-Antibiotics) to address antibiotic resistance: review and perspective. Int J Mol Sci. 2024;25(16):8915. doi: 10.3390/ijms25168915 EDN: ENXFUN
- Yu R, Chen H, He J, et al. Engineering antimicrobial metal-phenolic network nanoparticles with high biocompatibility for wound healing. Adv Mater. 2024;36(6):e2307680. doi: 10.1002/adma.202307680 EDN: DZXMBK
- Gbian DL, Omri A. Lipid-based drug delivery systems for diseases managements. Biomedicines. 2022;10(9):2137. doi: 10.3390/biomedicines10092137 EDN: IBMVEU
- Zhang Q, Wu W, Zhang J, Xia X. Antimicrobial lipids in nano-carriers for antibacterial delivery. J Drug Target. 2020;28(3):271–281. doi: 10.1080/1061186X.2019.1681434
- Azeredo da Silveira S, Shorr AF. Critical parameters for the development of novel therapies for severe and resistant infections-a case study on CAL02, a non-traditional broad-spectrum anti-virulence drug. Antibiotics (Basel). 2020;9(2):94. doi: 10.3390/antibiotics9020094 EDN: OVTRNS
- Laterre PF, Colin G, Dequin PF, et al. CAL02, a novel antitoxin liposomal agent, in severe pneumococcal pneumonia: a first-in-human, double-blind, placebo-controlled, randomised trial. Lancet Infect Dis. 2019;19(6):620–630. doi: 10.1016/S1473-3099(18)30805-3
- Sellarès-Nadal J, Burgos J, Falcó V, Almirante B. Investigational and experimental drugs for community-acquired pneumonia: the current evidence. J Exp Pharmacol. 2020;12:529–538. doi: 10.2147/JEP.S259286 EDN: ULSHOY
Дополнительные файлы
