The role of transforming growth factor β in COVID-19 lung injury: clinical and diagnostic parallels

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

BACKGROUND: Severe acute respiratory syndrome causes complex immune responses of hyperactivation of immunocompetent cells, including increased degranulation activity of mast cells and release of their secretome products. Mast cell granules may contain a lot of profibrotic enzymes and cytokines (chymase, tryptase, interleukin-4, 10, and 13) as well as growth factors. The entry of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) into the body and the subsequent strong immune and inflammatory response and dysregulation of coagulation and fibrinolytic pathways cause massive activation of latent (inactive) transforming growth factor β (TGF-β) in the lungs and the latent pool of TGF-β in the blood of patients with coronavirus disease 2019 (COVID-19).

AIM: To evaluate the role of TGF-β in lung involvement in patients with COVID-19 by examining autopsy lung material, determining the quantitative level of TGF-β with further correlation analysis of clinical and laboratory parameters.

MATERIALS AND METHODs: The study included autopsy lung samples from patients who died from severe COVID-19. Autopsies were performed 2 days after the patients died. Autopsy material was collected for histology. Correlation analysis was performed between the number of TGF-β-positive cells and clinical and laboratory parameters.

RESULTS: Extensive representation of TGF-β positive cells was found in autopsy tissues. A negative correlation was found between the number of TGF-β-positive cells and the blood concentration of band neutrophils (r=−0.617; p=0.033); between the number of TGF-β-positive cells and the concentration of C-reactive protein according to blood chemistry (r=–0.491; p=0.013). A positive correlation was found between the number of TGF-β-positive cells and blood platelet concentration (r=0.384; p=0.012); the number of TGF-β-positive cells and erythrocyte sedimentation rate (r=0.409; p=0.025). A positive correlation was also found between the number of TGF-β-positive cells and the presence of a cough in the patient at the beginning of the hospital stay (r=0.367; p=0.046).

CONCLUSION: A correlation was found between the number of TGF-β-positive cells, neutrophil concentration, platelet concentration, erythrocyte sedimentation rate, C-reactive protein concentration, and the presence of cough in patients who died from severe COVID-19. These correlations suggest the negative role of TGF-β and the therapeutic possibilities of regulating its activation. Further studies in a larger number of patients are required.

About the authors

Andrey V. Budnevsky

Voronezh State Medical University

Email: budnev@list.ru
ORCID iD: 0000-0002-1171-2746
SPIN-code: 7381-0612

MD, Dr. Sci. (Medicine), Professor

Russian Federation, Voronezh

Sergey N. Avdeev

The First Sechenov Moscow State Medical University

Email: serg_avdeev@list.ru
ORCID iD: 0000-0002-5999-2150
SPIN-code: 1645-5524

MD, Dr. Sci. (Medicine), Professor, Academician of the Russian Academy of Sciences

Russian Federation, Moscow

Evgeniy S. Ovsyannikov

Voronezh State Medical University

Email: ovses@yandex.ru
ORCID iD: 0000-0002-8545-6255
SPIN-code: 7999-0433

MD, Dr. Sci. (Medicine), Associate Professor, Professor

Russian Federation, Voronezh

Nadezhda G. Alekseeva

Voronezh State Medical University

Author for correspondence.
Email: nadya.alekseva@mail.ru
ORCID iD: 0000-0002-3357-9384
SPIN-code: 2284-2725

MD

Russian Federation, Voronezh

Oleg N. Choporov

Voronezh State Medical University

Email: onchoporov@vrngmu.ru
ORCID iD: 0000-0002-3176-499X
SPIN-code: 4294-9831

Dr. Sci. (Engineering), Professor

Russian Federation, Voronezh

Viktoria V. Shishkina

Voronezh State Medical University

Email: 4128069@gmail.ru
ORCID iD: 0000-0001-9185-4578
SPIN-code: 9339-7794

MD, Cand. Sci. (Medicine), Associate Professor

Russian Federation, Voronezh

Elena E. Ivanova

Voronezh State Medical University

Email: 89155888871@mail.ru
ORCID iD: 0000-0001-8920-8059
SPIN-code: 9608-2647

MD, Cand. Sci. (Medicine)

Russian Federation, Voronezh

Inna M. Perveeva

Voronezh State Medical University; Voronezh Regional Clinical Hospital No. 1

Email: perveeva.inna@yandex.ru
ORCID iD: 0000-0002-5712-9302
SPIN-code: 5995-6533

MD, Cand. Sci. (Medicine)

Russian Federation, Voronezh; Voronezh

References

  1. Sumantri S, Rengganis I. Immunological dysfunction and mast cell activation syndrome in long COVID. Asia Pac Allergy. 2023;13(1):50–53. doi: 10.5415/apallergy.0000000000000022
  2. Theoharides TC, Kempuraj D. Role of SARS-CoV-2 spike-protein-induced activation of microglia and mast cells in the pathogenesis of neuro-COVID. Cells. 2023;12(5):688. doi: 10.3390/cells12050688
  3. Wismans LV, Lopuhaä B, de Koning W, et al. Increase of mast cells in COVID-19 pneumonia may contribute to pulmonary fibrosis and thrombosis. Histopathology. 2023;82(3):407–419. doi: 10.1111/his.14838
  4. Budnevsky AV, Avdeev SN, Kosanovic D, et al. Role of mast cells in the pathogenesis of severe lung damage in COVID-19 patients. Respir Res. 2022;23(1):371. doi: 10.1186/s12931-022-02284-3
  5. Atiakshin DA, Shishkina VV, Esaulenko DI, et al.Mast cells as the target of the biological effects of molecular hydrogen in the specific tissue microenvironment. International Journal of Biomedicine. 2022;12(2):183–187. EDN: XIXSHE doi: 10.21103/Article12(2)_RA2
  6. Savage A, Risquez C, Gomi K, et al. The mast cell exosome-fibroblast connection: A novel pro-fibrotic pathway. Front Med (Lausanne). 2023;10:1139397. doi: 10.3389/fmed.2023.1139397
  7. Budnevsky AV, Avdeev SN, Ovsyannikov ES, et al. The role of mast cells and their proteases in lung damage associated with COVID-19. Pulmonologiya. 2023;33(1):17–26. EDN: KJVTRV doi: 10.18093/0869-0189-2023-33-1-17-26
  8. Budnevsky AV, Ovsyannikov ES, ShishkinaVV, et al. Possible unexplored aspects of COVID-19 pathogenesis: the role of carboxypeptidase A3. International Journal of Biomedicine. 2022;12(2):179–182. EDN: CEOCHZ doi: 10.21103/Article12(2)_RA1
  9. Arguinchona LM, Zagona-Prizio C, Joyce ME, et al. Microvascular significance of TGF-β axis activation in COVID-19. Front Cardiovasc Med. 2023;9:1054690. doi: 10.3389/fcvm.2022.1054690
  10. Coutts A, Chen G, Stephens N, et al. Release of biologically active TGF-beta from airway smooth muscle cells induces autocrine synthesis of collagen. Am J Physiol Lung Cell Mol Physiol. 2001;280(5):L999–L1008. doi: 10.1152/ajplung.2001.280.5.L999
  11. Chen W. A potential treatment of COVID-19 with TGF-β blockade. Int J Biol Sci. 2020;16(11):1954–1955. doi: 10.7150/ijbs.46891
  12. Delpino MV, Quarleri J. SARS-CoV-2 pathogenesis: imbalance in the renin-angiotensin system favors lung fibrosis. Front Cell Infect Microbiol. 2020;10:340. doi: 10.3389/fcimb.2020.00340
  13. Yaroshetsky AI, Gritsan AI, Avdeev SN, et al. Diagnostics and intensive therapy of acute respiratory distress syndrome. Clinical guidelines of the Federation of Anesthesiologists and Reanimatologists of Russia. Russian Journal of Anеsthesiology and Reanimatology. 2020;(2):5–39. EDN: KAMAJL doi: 10.17116/anaesthesiology20200215
  14. Buchwalow IB, Böcker W. Immunohistochemistry: basics and methods. Berlin, Heidelberg: Media; 2010. doi: 10.1007/978-3-642-04609-4
  15. Budnevskiy AV, Avdeev SN, Ovsyannikov ES, et al. Certain aspects of mast cell carboxypeptidase A3 involvement in the pathogenesis of COVID-19. Tuberculosis and Lung Diseases. 2024;102(1):26-33. EDN: WUPNAX doi: 10.58838/2075-1230-2024-102-1-26-33
  16. Zilberberg L, Todorovic V, Dabovic B, et al. Specificity of latent TGF-β binding protein (LTBP) incorporation into matrix: role of fibrillins and fibronectin. J Cell Physiol. 2012;227(12):3828–3836. doi: 10.1002/jcp.24094
  17. Han H, Yang L, Liu R, et al. Prominent changes in blood coagulation of patients with SARS-CoV-2 infection. Clin Chem Lab Med. 2020;58(7):1116–1120. doi: 10.1515/cclm-2020-0188
  18. Ito JT, Lourenço JD, Righetti RF, et al. Extracellular matrix component remodeling in respiratory diseases: what has been found in clinical and experimental studies? Cells. 2019;8(4):342. doi: 10.3390/cells8040342
  19. Ojiaku CA, Yoo EJ, Panettieri RA Jr. Transforming growth factor β1 function in airway remodeling and hyperresponsiveness. The missing link? Am J Respir Cell Mol Biol. 2017;56(4):432–442. doi: 10.1165/rcmb.2016-0307TR
  20. Magro C, Mulvey JJ, Berlin D, et al. Complement associated microvascular injury and thrombosis in the pathogenesis of severe COVID-19 infection: A report of five cases. Transl Res. 2020;220:1–13. doi: 10.1016/j.trsl.2020.04.007
  21. Lodigiani C, Iapichino G, Carenzo L, et al. Venous and arterial thromboembolic complications in COVID-19 patients admitted to an academic hospital in Milan, Italy. Thromb Res. 2020;191:9–14. doi: 10.1016/j.thromres.2020.04.024
  22. Renné T, Stavrou EX. Roles of factor XII in innate immunity. Front Immunol. 2019;10:2011. doi: 10.3389/fimmu.2019.02011
  23. Göbel K, Eichler S, Wiendl H, et al. The coagulation factors fibrinogen, thrombin, and factor XII in inflammatory disorders — a systematic review. Front Immunol. 2018;9:1731. doi: 10.3389/fimmu.2018.01731
  24. Zhou F, Yu T, Du R, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 2020;395(10229):1038. doi: 10.1016/S0140-6736(20)30566-3 Lancet. 2020;395(10229):1054–1062. doi: 10.1016/S0140-6736(20)30606-1
  25. Gautret P, Lagier JC, Parola P, et al. Clinical and microbiological effect of a combination of hydroxychloroquine and azithromycin in 80 COVID-19 patients with at least a six-day follow up: A pilot observational study. Travel Med Infect Dis. 2020;34:101663. doi: 10.1016/j.tmaid.2020.101663
  26. Zivancevic-Simonovic S, Minic R, Cupurdija V, et al. Transforming growth factor beta 1 (TGF-β1) in COVID-19 patients: relation to platelets and association with the disease outcome. Mol Cell Biochem. 2023;478(11):2461–2471. doi: 10.1007/s11010-023-04674-7
  27. Taus F, Salvagno G, Canè S, et al. Platelets promote thromboinflammation in SARS-CoV-2 pneumonia. Arterioscler Thromb Vasc Biol. 2020;40(12):2975–2989. doi: 10.1161/ATVBAHA.120.315175
  28. Zong X, Gu Y, Yu H, et al. Thrombocytopenia is associated with COVID-19 severity and outcome: an updated meta-analysis of 5637 patients with multiple outcomes. Lab Med. 2021;52(1):10–15. doi: 10.1093/labmed/lmaa067
  29. Ye Q, Wang B, Mao J. The pathogenesis and treatment of the "Cytokine Storm" in COVID-19. J Infect. 2020;80(6):607–613. doi: 10.1016/j.jinf.2020.03.037
  30. Shen WX, Luo RC, Wang JQ, et al. Features of cytokine storm identified by distinguishing clinical manifestations in COVID-19. Front Public Health. 2021;9:671788. doi: 10.3389/fpubh.2021.671788

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Histotopographic features of TGF-β-positive cells in the bronchial wall (a) and in the alveolar septa (b, c) of patients with COVID-19: a — cells with positive expression of TGF-β are observed in the bronchial lumen, the bronchial mucosa is also infiltrated by TGF-β-positive cells; b — positive immune reaction of TGF-β by numerous macrophages; c — perivascularly localized TGF-β-positive cell; d — focal fibrotic areas of the lung (connective tissue fibers are colored blue); e, f — cellular representatives of fibroblastic differon in lung stroma remodeling sites. Staining techniques: a–c — immunohistochemical reaction with antibodies to transforming growth factor (anti-TGF-β; #ab215715; dilution 1:500; Abcam, UK), specific brown staining, nuclei were stained with Mayer’s hematoxylin, bar — 20 µm; d, f — staining by picro method Mallory, bar: d — 50 µm and f — 20 µm; e — staining by hematoxylin and eosin, bar — 20 µm.

Download (1MB)

Copyright (c) 2024 Eco-Vector


 


Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».