ANALYTICAL MODEL OF TWT AND R-TWT MECHANISMS IN HETEROGENEOUS INDUSTRIAL INTERNET OF THINGS NETWORKS
- Authors: Shlapak M.V1,2, Stepanova E.A1,2, Lyakhov A.I1
-
Affiliations:
- A.A. Kharkevich Institute for Information Transmission Problems of the Russian Academy of Sciences
- Moscow Independent Research Institute of Artificial Intelligence
- Issue: Vol 61, No 4 (2025)
- Pages: 23-40
- Section: Communication Network Theory
- URL: https://bakhtiniada.ru/0555-2923/article/view/363550
- DOI: https://doi.org/10.7868/S3034583925040027
- ID: 363550
Cite item
Abstract
Keywords
About the authors
M. V Shlapak
A.A. Kharkevich Institute for Information Transmission Problems of the Russian Academy of Sciences; Moscow Independent Research Institute of Artificial Intelligence
Email: shlapak@wnlab.ru
Moscow, Russia; Moscow, Russia
E. A Stepanova
A.A. Kharkevich Institute for Information Transmission Problems of the Russian Academy of Sciences; Moscow Independent Research Institute of Artificial Intelligence
Email: stepanova@wnlab.ru
Moscow, Russia; Moscow, Russia
A. I Lyakhov
A.A. Kharkevich Institute for Information Transmission Problems of the Russian Academy of Sciences
Email: lyakhov@wnlab.ru
Moscow, Russia
References
- ˚Akerberg J., Gidlund M., Bj¨orkman M. Future Research Challenges in Wireless Sensor and Actuator Networks Targeting Industrial Automation // Proc. IEEE 9th Int. Conf. on Industrial Informatics (INDIN’2011). Lisbon, Portugal. July 26–29, 2011. P. 410–415. https://doi.org/10.1109/INDIN.2011.6034912
- Sisinni E., Saifullah A., Han S., Jennehag U., Gidlund M. Industrial Internet of Things: Challenges, Opportunities, and Directions // IEEE Trans. Industr. Inform. 2018. V. 14. № 11. P. 4724–4734. https://doi.org/10.1109/TII.2018.2852491
- Karimi M., Wang Y., Kim H. Energy-Adaptive Real-Time Sensing for Batteryless Devices // Proc. IEEE 28th Int. Conf. on Embedded and Real-Time Computing Systems and Applications (RTCSA’2022). Taipei, Taiwan. Aug. 23–25, 2022. P. 205–211. https://doi.org/10.1109/RTCSA55878.2022.00028
- Venkateswaran S.K., Tai C., Ahmed A., Sivakumar R. Target Wake Time in IEEE 802.11 WLANs: Survey, Challenges, and Opportunities // Comput. Commun. 2025. V. 236. P. 108127. https://doi.org/10.1016/j.comcom.2025.108127
- Venkateswaran S.K., Tai C.-L., Garnayak R., Ben-Yehezkel Y., Alpert Y., Sivakumar R., IEEE 802.11ax Target Wake Time: Design and Performance Analysis in ns-3 // Proc. 2024 Workshop on ns-3 (WNS3’24). Barcelona, Spain. June 5–6, 2024. New York: ACM, 2024. P. 10–18. https://doi.org/10.1145/3659111.3659115
- Shlapak M.V., Stepanova E.A., Lyakhov A.I. Efficiency Analysis of TWT and R-TWTMechanisms while Serving Delay-Sensitive Traffic // Probl. Inf. Transm. 2025. V. 61. № 3 (to appear).
- Geraci G., Meneghello F., Wilhelmi F., Lopez-Perez D., Val I., Galati Giordano L., Cordeiro C., Ghosh M., Knightly E., Bellalta B. Wi-Fi: Twenty-Five Years and Counting, https://arXiv.org/abs/2507.09613 [cs.NI], 2025.
- Charfi E., Saddoud A., Fourati L.C. From Wi-Fi 7 to Wi-Fi 8: A Survey of Technological Evolution, Emerging Applications, Challenges, and Future Aspects // Comput. Netw. 2025. V. 271. P. 111590. https://doi.org/10.1016/j.comnet.2025.111590
- Adame T., Carrascosa-Zamacois M., Bellalta B. Time-Sensitive Networking in IEEE 802.11be: On the Way to Low-Latency WiFi 7 // Sensors. 2021. V. 21. № 15. P. 4954 (20 pp.). https://doi.org/10.3390/s21154954
- John J., Noor-A-Rahim Md., Vijayan A., Poor H.V., Pesch D. Industry 4.0 and Beyond: The Role of 5G, WiFi 7, and Time-Sensitive Networking (TSN) in Enabling Smart Manufacturing // Future Internet. 2024. V. 16. № 9. P. 345 (19 pp.). https://doi.org/10.3390/fi16090345
- Chen C., Chen X., Das D., Akhmetov D., Cordeiro C. Overview and Performance Evaluation of Wi-Fi 7 // IEEE Commun. Stand. Mag. 2022. V. 6. № 2. P. 12–18. https://doi.org/10.1109/MCOMSTD.0001.2100082
- Barroso-Fern´andez C., Mart´ın-P´erez J., Ayimba C., De La Oliva A. Aligning rTWT with 802.1Qbv: A Network Calculus Approach // Proc. 24th Int. Symp. on Theory, Algorithmic Foundations, and Protocol Design for Mobile Networks and Mobile Computing (MobiHoc’23). Washington, DC, USA. Oct. 23–26, 2023. P. 352–354. https://doi.org/10.1145/3565287.3617606
- Belogaev A., Shen X., Pan C., Jiang X., Blondia C., Famaey J. Dedicated Restricted Target Wake Time for Real-Time Applications in Wi-Fi 7 // Proc. 2024 IEEE Wireless Communications and Networking Conf. (WCNC 2024). Dubai, United Arab Emirates. Apr. 21–24, 2024. P. 1–6. https://doi.org/10.1109/WCNC57260.2024.10571278
- Mozaffariahrar E., Wilhelmi F., Galati-Giordano L., Imputato P., Menth M., Avallone S. R-TWT in Wi-Fi 7 and Beyond: Enabling Bounded Latency, Energy Efficiency, and Reliability. Proc. IEEE 30th Int. Conf. on Emerging Technologies and Factory Automation (ETFA 2025). Porto, Portugal. Sept. 9–12, 2025. https://doi.org/10.1109/ETFA65518.2025.11205686
- Barroso-Fern´andez C., Mart´ın-P´erez J., Ayimba C., De La Oliva A. Time-Sensitive IIoT Flows over Wi-Fi: A Network Calculus Approach // IEEE Internet Things J. 2025. Early Access. https://doi.org/10.1109/JIOT.2025.3623878
- Haxhibeqiri J., Jiao X., Shen X., Pan C., Jiang X., Hoebeke J. Coordinated SR and Restricted TWT for Time Sensitive Applications in WiFi 7 Networks // IEEE Commun. Mag. 2024. V. 62. № 8. P. 118–124. https://doi.org/10.1109/MCOM.001.2300431
- Gu Z., Park J., Choi J. ScNeuGM: Scalable Neural Graph Modeling for Coloring-Based Contention and Interference Management in Wi-Fi 7, https://arXiv.org/abs/2502.03300[eess.SP], 2025.
- Bankov D.V., Lyakhov A.I., Stepanova E.A., Khorov E.M. Performance Evaluation of Wi-Fi 7 Networks with Restricted Target Wake Time // Probl. Inf. Transm. 2024. V. 60. № 3. P. 233–254. https://doi.org/10.1134/S0032946024030062
- Chemrov K., Bankov D., Khorov E., Lyakhov A. Smart Preliminary Channel Access to Support Real-Time Traffic in Wi-Fi Networks // Future Internet. 2022. V. 14. № 10. P. 296 (14 pp.). https://doi.org/10.3390/fi14100296
- Zanbouri K., Noor-A-Rahim Md., John J., Sreenan C.J., Poor H.V., Pesch D. A Comprehensive Survey of Wireless Time-Sensitive Networking (TSN): Architecture, Technologies, Applications, and Open Issues // IEEE Commun. Surv. Tutor. 2024. V. 27. № 4. P. 2129–2155. https://doi.org/10.1109/COMST.2024.3486618
- Vishnevsky V.M., Lyakhov A.I. IEEE 802.11 Wireless LAN: Saturation Throughput Analysis with Seizing Effect Consideration // Cluster Comput. 2002. V. 5. P. 133–144. https://doi.org/10.1023/A:1013977425774
- Bianchi G. Performance Analysis of the IEEE 802.11 Distributed Coordination Function // IEEE J. Sel. Areas Commun. 2000. V. 18. № 3. P. 535–547. https://doi.org/10.1109/49.840210
- Bankov D., Chemrov K., Khorov E. Tuning Channel Access to Enable Real-Time Applications in Wi-Fi 7 // 12th Int. Congr. on Ultra Modern Telecommunications and Control Systems and Workshops (ICUMT 2020). Brno, Czech Republic. Oct. 5–7, 2020. P. 20–25. https://doi.org/10.1109/ICUMT51630.2020.9222409
- IEEE 802.11ax-2021: IEEE Standard for Information Technology—Telecommunications and Information Exchange between Systems Local and Metropolitan Area Networks—Specific Requirements—Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications Amendment 1: Enhancements for High-EfficiencyWLAN. IEEE, 2021. https://doi.org/10.1109/IEEESTD.2021.9442429
- Schneider B., Richerzhagen B., Bahr M., Carle G. Scheduled Trigger Frames: Enabling Worst-case Latency Bounds for Wi-Fi Industrial Use // Proc. 10th Int. Wireless Communications and Mobile Computing Conf. (IWCMC 2024). Ayia Napa, Cyprus. May 27–31, 2024. P. 1080–1085. https://doi.org/10.1109/IWCMC61514.2024.10592355
Supplementary files


