ANALYTICAL MODEL OF TWT AND R-TWT MECHANISMS IN HETEROGENEOUS INDUSTRIAL INTERNET OF THINGS NETWORKS

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

One of the goals of developing Wi-Fi 6 and Wi-Fi 7 standards is to support real-time applications (RTAs) that have strict requirements for latency and data delivery reliability, as well as the power consumption of RTA stations that transmit such data. To meet the above-mentioned Quality of Service (QoS) requirements, Wi-Fi 7 proposes the use of the R-TWT mechanism, an improved version of the TWT mechanism widely used in Wi-Fi 6 networks, which is capable of meeting more stringent QoS requirements but is complex to implement and has limited support from real devices. The article develops an analytical model for data delivery using TWT and R-TWT mechanisms, which for the first time allows estimating the probability of RTA station frame delivery within a given time and the throughput of conventional devices in heterogeneous Industrial Internet of Things networks. The developed model is used to find parameters that maximize the throughput for conventional stations while meeting the QoS requirements of RTA stations.

作者简介

M. Shlapak

A.A. Kharkevich Institute for Information Transmission Problems of the Russian Academy of Sciences; Moscow Independent Research Institute of Artificial Intelligence

Email: shlapak@wnlab.ru
Moscow, Russia; Moscow, Russia

E. Stepanova

A.A. Kharkevich Institute for Information Transmission Problems of the Russian Academy of Sciences; Moscow Independent Research Institute of Artificial Intelligence

Email: stepanova@wnlab.ru
Moscow, Russia; Moscow, Russia

A. Lyakhov

A.A. Kharkevich Institute for Information Transmission Problems of the Russian Academy of Sciences

Email: lyakhov@wnlab.ru
Moscow, Russia

参考

  1. ˚Akerberg J., Gidlund M., Bj¨orkman M. Future Research Challenges in Wireless Sensor and Actuator Networks Targeting Industrial Automation // Proc. IEEE 9th Int. Conf. on Industrial Informatics (INDIN’2011). Lisbon, Portugal. July 26–29, 2011. P. 410–415. https://doi.org/10.1109/INDIN.2011.6034912
  2. Sisinni E., Saifullah A., Han S., Jennehag U., Gidlund M. Industrial Internet of Things: Challenges, Opportunities, and Directions // IEEE Trans. Industr. Inform. 2018. V. 14. № 11. P. 4724–4734. https://doi.org/10.1109/TII.2018.2852491
  3. Karimi M., Wang Y., Kim H. Energy-Adaptive Real-Time Sensing for Batteryless Devices // Proc. IEEE 28th Int. Conf. on Embedded and Real-Time Computing Systems and Applications (RTCSA’2022). Taipei, Taiwan. Aug. 23–25, 2022. P. 205–211. https://doi.org/10.1109/RTCSA55878.2022.00028
  4. Venkateswaran S.K., Tai C., Ahmed A., Sivakumar R. Target Wake Time in IEEE 802.11 WLANs: Survey, Challenges, and Opportunities // Comput. Commun. 2025. V. 236. P. 108127. https://doi.org/10.1016/j.comcom.2025.108127
  5. Venkateswaran S.K., Tai C.-L., Garnayak R., Ben-Yehezkel Y., Alpert Y., Sivakumar R., IEEE 802.11ax Target Wake Time: Design and Performance Analysis in ns-3 // Proc. 2024 Workshop on ns-3 (WNS3’24). Barcelona, Spain. June 5–6, 2024. New York: ACM, 2024. P. 10–18. https://doi.org/10.1145/3659111.3659115
  6. Shlapak M.V., Stepanova E.A., Lyakhov A.I. Efficiency Analysis of TWT and R-TWTMechanisms while Serving Delay-Sensitive Traffic // Probl. Inf. Transm. 2025. V. 61. № 3 (to appear).
  7. Geraci G., Meneghello F., Wilhelmi F., Lopez-Perez D., Val I., Galati Giordano L., Cordeiro C., Ghosh M., Knightly E., Bellalta B. Wi-Fi: Twenty-Five Years and Counting, https://arXiv.org/abs/2507.09613 [cs.NI], 2025.
  8. Charfi E., Saddoud A., Fourati L.C. From Wi-Fi 7 to Wi-Fi 8: A Survey of Technological Evolution, Emerging Applications, Challenges, and Future Aspects // Comput. Netw. 2025. V. 271. P. 111590. https://doi.org/10.1016/j.comnet.2025.111590
  9. Adame T., Carrascosa-Zamacois M., Bellalta B. Time-Sensitive Networking in IEEE 802.11be: On the Way to Low-Latency WiFi 7 // Sensors. 2021. V. 21. № 15. P. 4954 (20 pp.). https://doi.org/10.3390/s21154954
  10. John J., Noor-A-Rahim Md., Vijayan A., Poor H.V., Pesch D. Industry 4.0 and Beyond: The Role of 5G, WiFi 7, and Time-Sensitive Networking (TSN) in Enabling Smart Manufacturing // Future Internet. 2024. V. 16. № 9. P. 345 (19 pp.). https://doi.org/10.3390/fi16090345
  11. Chen C., Chen X., Das D., Akhmetov D., Cordeiro C. Overview and Performance Evaluation of Wi-Fi 7 // IEEE Commun. Stand. Mag. 2022. V. 6. № 2. P. 12–18. https://doi.org/10.1109/MCOMSTD.0001.2100082
  12. Barroso-Fern´andez C., Mart´ın-P´erez J., Ayimba C., De La Oliva A. Aligning rTWT with 802.1Qbv: A Network Calculus Approach // Proc. 24th Int. Symp. on Theory, Algorithmic Foundations, and Protocol Design for Mobile Networks and Mobile Computing (MobiHoc’23). Washington, DC, USA. Oct. 23–26, 2023. P. 352–354. https://doi.org/10.1145/3565287.3617606
  13. Belogaev A., Shen X., Pan C., Jiang X., Blondia C., Famaey J. Dedicated Restricted Target Wake Time for Real-Time Applications in Wi-Fi 7 // Proc. 2024 IEEE Wireless Communications and Networking Conf. (WCNC 2024). Dubai, United Arab Emirates. Apr. 21–24, 2024. P. 1–6. https://doi.org/10.1109/WCNC57260.2024.10571278
  14. Mozaffariahrar E., Wilhelmi F., Galati-Giordano L., Imputato P., Menth M., Avallone S. R-TWT in Wi-Fi 7 and Beyond: Enabling Bounded Latency, Energy Efficiency, and Reliability. Proc. IEEE 30th Int. Conf. on Emerging Technologies and Factory Automation (ETFA 2025). Porto, Portugal. Sept. 9–12, 2025. https://doi.org/10.1109/ETFA65518.2025.11205686
  15. Barroso-Fern´andez C., Mart´ın-P´erez J., Ayimba C., De La Oliva A. Time-Sensitive IIoT Flows over Wi-Fi: A Network Calculus Approach // IEEE Internet Things J. 2025. Early Access. https://doi.org/10.1109/JIOT.2025.3623878
  16. Haxhibeqiri J., Jiao X., Shen X., Pan C., Jiang X., Hoebeke J. Coordinated SR and Restricted TWT for Time Sensitive Applications in WiFi 7 Networks // IEEE Commun. Mag. 2024. V. 62. № 8. P. 118–124. https://doi.org/10.1109/MCOM.001.2300431
  17. Gu Z., Park J., Choi J. ScNeuGM: Scalable Neural Graph Modeling for Coloring-Based Contention and Interference Management in Wi-Fi 7, https://arXiv.org/abs/2502.03300[eess.SP], 2025.
  18. Bankov D.V., Lyakhov A.I., Stepanova E.A., Khorov E.M. Performance Evaluation of Wi-Fi 7 Networks with Restricted Target Wake Time // Probl. Inf. Transm. 2024. V. 60. № 3. P. 233–254. https://doi.org/10.1134/S0032946024030062
  19. Chemrov K., Bankov D., Khorov E., Lyakhov A. Smart Preliminary Channel Access to Support Real-Time Traffic in Wi-Fi Networks // Future Internet. 2022. V. 14. № 10. P. 296 (14 pp.). https://doi.org/10.3390/fi14100296
  20. Zanbouri K., Noor-A-Rahim Md., John J., Sreenan C.J., Poor H.V., Pesch D. A Comprehensive Survey of Wireless Time-Sensitive Networking (TSN): Architecture, Technologies, Applications, and Open Issues // IEEE Commun. Surv. Tutor. 2024. V. 27. № 4. P. 2129–2155. https://doi.org/10.1109/COMST.2024.3486618
  21. Vishnevsky V.M., Lyakhov A.I. IEEE 802.11 Wireless LAN: Saturation Throughput Analysis with Seizing Effect Consideration // Cluster Comput. 2002. V. 5. P. 133–144. https://doi.org/10.1023/A:1013977425774
  22. Bianchi G. Performance Analysis of the IEEE 802.11 Distributed Coordination Function // IEEE J. Sel. Areas Commun. 2000. V. 18. № 3. P. 535–547. https://doi.org/10.1109/49.840210
  23. Bankov D., Chemrov K., Khorov E. Tuning Channel Access to Enable Real-Time Applications in Wi-Fi 7 // 12th Int. Congr. on Ultra Modern Telecommunications and Control Systems and Workshops (ICUMT 2020). Brno, Czech Republic. Oct. 5–7, 2020. P. 20–25. https://doi.org/10.1109/ICUMT51630.2020.9222409
  24. IEEE 802.11ax-2021: IEEE Standard for Information Technology—Telecommunications and Information Exchange between Systems Local and Metropolitan Area Networks—Specific Requirements—Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications Amendment 1: Enhancements for High-EfficiencyWLAN. IEEE, 2021. https://doi.org/10.1109/IEEESTD.2021.9442429
  25. Schneider B., Richerzhagen B., Bahr M., Carle G. Scheduled Trigger Frames: Enabling Worst-case Latency Bounds for Wi-Fi Industrial Use // Proc. 10th Int. Wireless Communications and Mobile Computing Conf. (IWCMC 2024). Ayia Napa, Cyprus. May 27–31, 2024. P. 1080–1085. https://doi.org/10.1109/IWCMC61514.2024.10592355

补充文件

附件文件
动作
1. JATS XML

版权所有 © Russian Academy of Sciences, 2025

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».