Production of recombinant phage antibodies specific to gentamicin and their use in dot immunoassay
- Авторлар: Guliy O.I.1, Chumakov D.S.1, Grinev V.S.1,2, Karavaeva O.A.1
-
Мекемелер:
- Institute of Biochemistry and Physiology of Plants and Microorganisms – Subdivision Research Institution Saratov Federal Scientific Centre of the Russian Academy of Sciences
- Institute of Chemistry, N. G. Chernyshevsky Saratov National Research State University
- Шығарылым: Том 61, № 4 (2025)
- Беттер: 429-437
- Бөлім: Articles
- URL: https://bakhtiniada.ru/0555-1099/article/view/353494
- DOI: https://doi.org/10.7868/S3034574
- ID: 353494
Дәйексөз келтіру
Аннотация
The potential of using phage display technology to obtain antigentamycin antibodies has been demonstrated. Antigentamycin recombinant antibodies were obtained for the first time using a sheep phage library (Griffin.1, UK). The interaction between obtained phage antibodies and gentamicin was monitored using a circular dichroism spectroscopy. It was shown that the interaction between antigentamycin phage antibodies and corresponding antibiotic is characterized by the presence of a characteristic exciton doublet: a positive peak at ~233 nm and a more intense negative peak with a maximum at ~240 nm. The possibility of gentamicin indication using a test system based on the dot immunoassay method and antigentamycin recombinant antibodies in aqueous solutions has been demonstrated for the first time; the lower limit of antibiotic detection is 0.5 μ g/ml. Using the dot immunoassay method, it was found that antigentamycin phage antibodies did not exhibit activity towards ampicillin and tetracycline, but showed activity towards kanamycin (lower limit of detection – 1 μ g/ml). The results are promising for further development of methods for gentamicin detection using recombinant phage antibodies.
Негізгі сөздер
Авторлар туралы
O. Guliy
Institute of Biochemistry and Physiology of Plants and Microorganisms – Subdivision Research Institution Saratov Federal Scientific Centre of the Russian Academy of Sciences
Email: guliy_olga@mail.ru
Saratov, 410049 Russia
D. Chumakov
Institute of Biochemistry and Physiology of Plants and Microorganisms – Subdivision Research Institution Saratov Federal Scientific Centre of the Russian Academy of Sciences
Email: guliy_olga@mail.ru
Saratov, 410049 Russia
V. Grinev
Institute of Biochemistry and Physiology of Plants and Microorganisms – Subdivision Research Institution Saratov Federal Scientific Centre of the Russian Academy of Sciences; Institute of Chemistry, N. G. Chernyshevsky Saratov National Research State University
Email: guliy_olga@mail.ru
Saratov, 410049 Russia; Saratov, 410012 Russia
O. Karavaeva
Institute of Biochemistry and Physiology of Plants and Microorganisms – Subdivision Research Institution Saratov Federal Scientific Centre of the Russian Academy of Sciences
Хат алмасуға жауапты Автор.
Email: guliy_olga@mail.ru
Saratov, 410049 Russia
Әдебиет тізімі
- Dawadi S., Thapa R., Modi B., Bhandari S., Timilsi- na A.P.; Yadav R.P. et al. // Processes 2021. V. 9. № 9. 1500. https :// doi . org / 10.3390/pr9091500
- Larsson D.G. // Ups. J. Med. Sci. 2014. V. 119. № 2. P. 108–1 12. https :// doi . org / 10.3109/03009734.2014.896438
- Sadrolhosseini A.R., Hamidi S.M., Mazhdi Y. // Measurement. 2025. V. 239. 115412. https :// doi . org / 10.1016/j.measurement.2024.115412
- Sales of Veterinary Antimicrobial Agents in 31 European Countries in 2022' (EMA/299538/2023). Luxembourg: Publications Office of the European Union, 2023. https :// doi.org/10.2809/895656
- Riviere J.E., Spoo J.W. In: Veterinary Pharmacology and Therapeutics, / Ed. H.R. Adams. Iowa State University Press, 2001. P. 841–867.
- Robert F.W.M., Melanie S.J. // Aust. Prescr. 2010. V. 33. P. 134– 135. https :// doi . org / 10.18773/austprescr.2010.062
- Gehring R., Haskell S.R., Payne M.A. , Craigmill A.L., Webb A.I., Riviere J.E. // J. Am. Vet. Med. A. 2005. V. 227. P. 63–66. https :// doi . org / 10.2460/javma.2005.227.63
- Hayward R.S., Harding J., Molloy R., Land L., Longcroft-Neal K., Moore D., Ross J.D.C. // Br. Clin Pharmacol. 2018. V. 84. № 2. P. 223–238. https :// doi . org / 10.1111/bcp.13439
- LeBrun M., Grenier L., Gourde P., Bergeron M.G., Labrecque G. // Antimicrob . Agents Chemother. 1999. V. 43. № 5. P. 1020–1026. https :// doi . org / 10.1128/AAC.43.5.1020
- Zhang S., Geng Y., Ye N., Xiang Y . // Microchem. J. 2020. V. 158. 105190 . https :// doi . org / 10.1016/j.microc.2020.105190
- Segura P.A., François M., Gagnon C., Sauvé S. // Environ. Health Perspect. 2009. V. 117. № 5. P. 675–684. https :// doi.org/10.1289/ehp.11776
- Deng W., Wang D., Dai P., Hong Y., Xiong J., Duan L. et al. // Microchem. J. 2024. V. 197. 109706. https :// doi.org/10.1016/j.microc.2023.109706
- Dai P., Zhang Y., Hong Y., Xiong J., Du H., Duan L. et al. // Food Chem. 2023. V. 400. 134067. https :// doi . org / 10.1016/j.foodchem.2022.134067
- Jin Y., Jang J.W., Han C.H., Lee M.H. // J. Agric. Food Chem. 2005. V. 53 . № 20. P. 7639–7643. https :// doi . org / 10.1021/jf050484o
- Ramalingam S., Collier C.M., Singh A. // Biosensors 2021. V. 11. 29. https :// doi . org / 10.3390/bios11020029
- Burç M., Duran S.T., Güng ör Ö., Köytepe S. // Electroanalysis 2022. V. 34. № 7. P. 1212–1226. https :// doi . org / 10.1002/elan.202100630
- Guo X., Guo Y. , Chen X. // Int. J. Mol. Sci. 2024. V. 25. № 4. 2143. https :// doi . org / 10.3390/ijms25042143
- Li K.W., Yen Y.K. // Biosens Bioelectron. 2019. V. 130. P. 420–426. https :// doi.org/ 10.1016/j.bios.2018.09.014
- Guliy O.I., Zaitsev B.D., Bo rodina I.A. In: Nanobioanalytical Approaches to Medical Diagnostics. / Eds: P.K. Maurya, P. Chandra Elsevier Ltd. Woodhead Publishing, 2022. Chapter 5. Р . 143 –177. ISBN 978-0-323-85147-3. https :// doi . org / 10.1016/B978-0-323-85147-3.00004-9
- G uliy O.I., Zaitsev B.D., Borodina I.A. // Sensors. 2023. V. 23. 6292. https :// doi.org/10.3390/s23146292
- Bashir S., Paeshuyse J. // Antibodies. 2020. V. 9. 21. https :// doi. org/10.3390/antib9020021
- Guliy O.I., Evstigneeva S.S., Dykman L.A. // Appl. Biochem. Microbiol. 2022. V. 58. Suppl. 1. P. S32–S46. https :// doi . org / 10.1134/S0003683822100076
- Moreira G.M.S.G., Gronow S., Dübel S., Mendonça M., Moreira Â.N. , Conceição F.R. et al. // Front. Public Health. 2022. V. 10. 712657. https :// doi . org / 10.3389/fpubh.2022.712657
- Huang J.X., Bishop-Hurley S.L., Cooper M.A. // Antimicrob. Agents Chemother. 2012. V. 56 . № 9. P. 4569–4582. https :// doi . org / 10.1128/AAC.00567-12
- Roth K.D.R., Wenzel E.V., Ruschig M., Steinke S., Langreder N., Heine P.A. et al. // Front. Cell. Infect. Microbiol. 2021. V. 11. 697876. https :// doi.org/10.3389/fcimb.2021.697876
- Kulkarni A., Mochnáčová E., Majerova P., C ̌urlı́k J., Bhide K., Mertinková P. et al. // Front. Mol. Biosci. 2020. V. 7. 573281. https :// doi . org / 10.3389/fmolb.2020.573281
- Nian S., Wu T., Ye Y., Wang X., Xu W., Yuan Q. // BMC Immunol. 2016. V. 17. P. 8. https :// doi.org/10.1186/s12865-016-0146-z
- Salem R., El-Kholy A.A., Ibrahim M. // Virology 2019. V. 533. P. 145–154. https :// doi. org/10.1016/j.virol.2019.05.012
- Guliy O.I., Evstigneeva S.S., Khanadeev V.A., Dyk-man, L.A. // Biosensors 2023. V. 13. 640. https :// doi . org / 10.3390/ bios13060640
- Petrenko V.A., Gillespie J.W., De Plano L.M., Shok- hen M.A. // Viruses. 2022. V. 14. 384. https://doi.org/10.3390/v14020384
- Sadraeian M., Maleki R., Moraghebi M., Bahrami A. // Molecules. 2024. V. 29. 3002. https :// doi . org / 10.3390/molecules29133002
- Guliy O.I., Evstigneeva S.S., Dykman L.A. // Biosens. Bioelectron . 2023. V. 222. P. 114909. https :// doi.org/ 10.1016/j.bios.2022.114909
- Staroverov S.A., Volkov A.A., Fomin A.S., Laska- vuy V.N., Mezhennyy P.V., Kozlov S.V. et al. // J. Immunoassay Immunochem. 2015. V. 36. P. 100–110. https :// doi . org / 10.1080/15321819.2014.899257
- Petrenko V.A. // Viruses 2024. V. 16. 968. https :// doi . org /10.3390/ v 16060968
- Guliy O . I ., Alsowaidi A . K . M ., Fomin A . S ., Gaba- lov K . P ., Staroverov S . A ., Karavaeva O . A . // Appl . Biochem . Microbiol . 2022. V . 58. № 5. P. 646–651. https :// doi.org/10.1134/S0003683822050088
- Guliy O.I., Evstigneeva S.S., Staroverov S.A., Fomin A.S., Karavaeva O. A. // Appl. Biochem. Microbiol. 2023. V. 59. № 5. P. 716–722. https :// doi.org/ 10.1134/S0003683823050071
- Charlton, K.A., Moyle, S., Porter, A.J.R., Harris, W.J. // J. Immunol. 2000 V. 164. P. 6221–6229. https :// doi.org/10.4049/jimmunol.164.12.6221
- Wei Q., Zhao Y., Du B., Wu D., Li H., Yang M. // Food Chem. 2012. V. 134. № 3. P. 1601– 1606. https :// https :// doi.org/10.1016/j.foodchem.2012. 02.126
- Aripov V.S., Volkova N.V., Ilyichev A.A., Shcherba-| kov D.N. // Vavilov Journal of Genetics and Breeding. 2024. V. 28. № 2 . P. 249–257. https :// https :// doi.org/10.18699/vjgb-24-29
- Smith G.P., Scott J.K. // Methods Enzymol. 1993. V. 217. P. 228–257. https :// doi.org/10.1016/0076-6879(93)17065-D
- Shah K., Maghsoudlou P. // Br. J. Hosp. Med. 2016. V. 77. P. 98 – 101. https :// doi.org/10.12968/hmed.2016.77.7.C98
- Frens G. // Nat. Phys. Sci. 1973. V. 241. P. 20–22. https :// doi.org/10.1038/physci241020a0
- Guliy O.I., Zaitsev B.D., Burygin G.L., Karavaeva O.A., Fomin A.S., Staroverov S.A. // Ultrasound Med. Biol. 2020. V. 46. P. 1727–1737. https :// doi.org/10.1016/j.ultrasmedbio.2020.03.014
- Khlebtsov N.G ., Dykman L.A., Khlebtsov B.N. // Russ. Chem. Rev. 2022. V. 91. P. 1–29. https :// doi.org/10.57634/RCR5058
- Chang Y.-M., Chen Cammy K.-M. , Hou M.-H. // Int. J. Mol. Sci. 2012. V. 13. P. 3394–3413. https :// doi.org/10.3390/ijms13033394
- Bruque M.G., Rodger A., Hoffmann S.V., Jones N.C., Aucamp J., Dafforn T.R. et al. // Anal. Chem. 2024. V. 96. P. 15151−15159. https :// doi.org/10.1021/acs.analchem.4c01882
Қосымша файлдар

