Получение рекомбинантных фаговых антител, специфичных к гентамицину, и их применение в дот-иммуноанализе
- Авторы: Гулий О.И.1, Чумаков Д.С.1, Гринёв В.С.1,2, Караваева О.А.1
-
Учреждения:
- Институт биохимии и физиологии растений и микроорганизмов, Федеральный исследовательский центр “Саратовский научный центр РАН”
- Саратовский национальный исследовательский государственный университет имени Н.Г. Чернышевского
- Выпуск: Том 61, № 4 (2025)
- Страницы: 429-437
- Раздел: Статьи
- URL: https://bakhtiniada.ru/0555-1099/article/view/353494
- DOI: https://doi.org/10.7868/S3034574
- ID: 353494
Цитировать
Аннотация
Показана перспективность применения технологии фагового дисплея для получения антигентамициновых антител. Антигентамициновые рекомбинантные антитела впервые получены с использованием овечьей фаговой библиотеки (Griffin.1, UK). Контроль взаимодействия полученных фаговых антител с гентамицином проводили с помощью спектроскопии кругового дихроизма (КД). Показано, что взаимодействие антигентамициновых фаговых антител с соответствующим антибиотиком сопровождалось появлением в спектрах КД характеристичного экситонного дублета: положительного пика при ~233 нм и более интенсивного отрицательного пика с максимумом ~240 нм. Впервые показана возможность индикации гентамицина с помощью тест-системы на основе метода дот-иммуноанализа и антигентамициновых рекомбинантных антител в водных растворах. Нижний предел детекции антибиотика составлял – 0.5 мкг/мл. Методом дот-иммуноанализа установлено, что антигентамициновые фаговые антитела не взаимодействовали с ампициллином и тетрациклином, но взаимодействовали с канамицином (нижний предел детекции – 1 мкг /мл). Результаты являются перспективными для дальнейшего развития методов определения гентамицина с помощью рекомбинантных фаговых антител.
Ключевые слова
Об авторах
О. И. Гулий
Институт биохимии и физиологии растений и микроорганизмов, Федеральный исследовательский центр “Саратовский научный центр РАН”
Email: guliy_olga@mail.ru
Саратов, 410049 Россия
Д. С. Чумаков
Институт биохимии и физиологии растений и микроорганизмов, Федеральный исследовательский центр “Саратовский научный центр РАН”
Email: guliy_olga@mail.ru
Саратов, 410049 Россия
В. С. Гринёв
Институт биохимии и физиологии растений и микроорганизмов, Федеральный исследовательский центр “Саратовский научный центр РАН”; Саратовский национальный исследовательский государственный университет имени Н.Г. Чернышевского
Email: guliy_olga@mail.ru
Саратов, 410049 Россия; Саратов, 410012 Россия
О. А. Караваева
Институт биохимии и физиологии растений и микроорганизмов, Федеральный исследовательский центр “Саратовский научный центр РАН”
Автор, ответственный за переписку.
Email: guliy_olga@mail.ru
Саратов, 410049 Россия
Список литературы
- Dawadi S., Thapa R., Modi B., Bhandari S., Timilsi- na A.P.; Yadav R.P. et al. // Processes 2021. V. 9. № 9. 1500. https :// doi . org / 10.3390/pr9091500
- Larsson D.G. // Ups. J. Med. Sci. 2014. V. 119. № 2. P. 108–1 12. https :// doi . org / 10.3109/03009734.2014.896438
- Sadrolhosseini A.R., Hamidi S.M., Mazhdi Y. // Measurement. 2025. V. 239. 115412. https :// doi . org / 10.1016/j.measurement.2024.115412
- Sales of Veterinary Antimicrobial Agents in 31 European Countries in 2022' (EMA/299538/2023). Luxembourg: Publications Office of the European Union, 2023. https :// doi.org/10.2809/895656
- Riviere J.E., Spoo J.W. In: Veterinary Pharmacology and Therapeutics, / Ed. H.R. Adams. Iowa State University Press, 2001. P. 841–867.
- Robert F.W.M., Melanie S.J. // Aust. Prescr. 2010. V. 33. P. 134– 135. https :// doi . org / 10.18773/austprescr.2010.062
- Gehring R., Haskell S.R., Payne M.A. , Craigmill A.L., Webb A.I., Riviere J.E. // J. Am. Vet. Med. A. 2005. V. 227. P. 63–66. https :// doi . org / 10.2460/javma.2005.227.63
- Hayward R.S., Harding J., Molloy R., Land L., Longcroft-Neal K., Moore D., Ross J.D.C. // Br. Clin Pharmacol. 2018. V. 84. № 2. P. 223–238. https :// doi . org / 10.1111/bcp.13439
- LeBrun M., Grenier L., Gourde P., Bergeron M.G., Labrecque G. // Antimicrob . Agents Chemother. 1999. V. 43. № 5. P. 1020–1026. https :// doi . org / 10.1128/AAC.43.5.1020
- Zhang S., Geng Y., Ye N., Xiang Y . // Microchem. J. 2020. V. 158. 105190 . https :// doi . org / 10.1016/j.microc.2020.105190
- Segura P.A., François M., Gagnon C., Sauvé S. // Environ. Health Perspect. 2009. V. 117. № 5. P. 675–684. https :// doi.org/10.1289/ehp.11776
- Deng W., Wang D., Dai P., Hong Y., Xiong J., Duan L. et al. // Microchem. J. 2024. V. 197. 109706. https :// doi.org/10.1016/j.microc.2023.109706
- Dai P., Zhang Y., Hong Y., Xiong J., Du H., Duan L. et al. // Food Chem. 2023. V. 400. 134067. https :// doi . org / 10.1016/j.foodchem.2022.134067
- Jin Y., Jang J.W., Han C.H., Lee M.H. // J. Agric. Food Chem. 2005. V. 53 . № 20. P. 7639–7643. https :// doi . org / 10.1021/jf050484o
- Ramalingam S., Collier C.M., Singh A. // Biosensors 2021. V. 11. 29. https :// doi . org / 10.3390/bios11020029
- Burç M., Duran S.T., Güng ör Ö., Köytepe S. // Electroanalysis 2022. V. 34. № 7. P. 1212–1226. https :// doi . org / 10.1002/elan.202100630
- Guo X., Guo Y. , Chen X. // Int. J. Mol. Sci. 2024. V. 25. № 4. 2143. https :// doi . org / 10.3390/ijms25042143
- Li K.W., Yen Y.K. // Biosens Bioelectron. 2019. V. 130. P. 420–426. https :// doi.org/ 10.1016/j.bios.2018.09.014
- Guliy O.I., Zaitsev B.D., Bo rodina I.A. In: Nanobioanalytical Approaches to Medical Diagnostics. / Eds: P.K. Maurya, P. Chandra Elsevier Ltd. Woodhead Publishing, 2022. Chapter 5. Р . 143 –177. ISBN 978-0-323-85147-3. https :// doi . org / 10.1016/B978-0-323-85147-3.00004-9
- G uliy O.I., Zaitsev B.D., Borodina I.A. // Sensors. 2023. V. 23. 6292. https :// doi.org/10.3390/s23146292
- Bashir S., Paeshuyse J. // Antibodies. 2020. V. 9. 21. https :// doi. org/10.3390/antib9020021
- Guliy O.I., Evstigneeva S.S., Dykman L.A. // Appl. Biochem. Microbiol. 2022. V. 58. Suppl. 1. P. S32–S46. https :// doi . org / 10.1134/S0003683822100076
- Moreira G.M.S.G., Gronow S., Dübel S., Mendonça M., Moreira Â.N. , Conceição F.R. et al. // Front. Public Health. 2022. V. 10. 712657. https :// doi . org / 10.3389/fpubh.2022.712657
- Huang J.X., Bishop-Hurley S.L., Cooper M.A. // Antimicrob. Agents Chemother. 2012. V. 56 . № 9. P. 4569–4582. https :// doi . org / 10.1128/AAC.00567-12
- Roth K.D.R., Wenzel E.V., Ruschig M., Steinke S., Langreder N., Heine P.A. et al. // Front. Cell. Infect. Microbiol. 2021. V. 11. 697876. https :// doi.org/10.3389/fcimb.2021.697876
- Kulkarni A., Mochnáčová E., Majerova P., C ̌urlı́k J., Bhide K., Mertinková P. et al. // Front. Mol. Biosci. 2020. V. 7. 573281. https :// doi . org / 10.3389/fmolb.2020.573281
- Nian S., Wu T., Ye Y., Wang X., Xu W., Yuan Q. // BMC Immunol. 2016. V. 17. P. 8. https :// doi.org/10.1186/s12865-016-0146-z
- Salem R., El-Kholy A.A., Ibrahim M. // Virology 2019. V. 533. P. 145–154. https :// doi. org/10.1016/j.virol.2019.05.012
- Guliy O.I., Evstigneeva S.S., Khanadeev V.A., Dyk-man, L.A. // Biosensors 2023. V. 13. 640. https :// doi . org / 10.3390/ bios13060640
- Petrenko V.A., Gillespie J.W., De Plano L.M., Shok- hen M.A. // Viruses. 2022. V. 14. 384. https://doi.org/10.3390/v14020384
- Sadraeian M., Maleki R., Moraghebi M., Bahrami A. // Molecules. 2024. V. 29. 3002. https :// doi . org / 10.3390/molecules29133002
- Guliy O.I., Evstigneeva S.S., Dykman L.A. // Biosens. Bioelectron . 2023. V. 222. P. 114909. https :// doi.org/ 10.1016/j.bios.2022.114909
- Staroverov S.A., Volkov A.A., Fomin A.S., Laska- vuy V.N., Mezhennyy P.V., Kozlov S.V. et al. // J. Immunoassay Immunochem. 2015. V. 36. P. 100–110. https :// doi . org / 10.1080/15321819.2014.899257
- Petrenko V.A. // Viruses 2024. V. 16. 968. https :// doi . org /10.3390/ v 16060968
- Guliy O . I ., Alsowaidi A . K . M ., Fomin A . S ., Gaba- lov K . P ., Staroverov S . A ., Karavaeva O . A . // Appl . Biochem . Microbiol . 2022. V . 58. № 5. P. 646–651. https :// doi.org/10.1134/S0003683822050088
- Guliy O.I., Evstigneeva S.S., Staroverov S.A., Fomin A.S., Karavaeva O. A. // Appl. Biochem. Microbiol. 2023. V. 59. № 5. P. 716–722. https :// doi.org/ 10.1134/S0003683823050071
- Charlton, K.A., Moyle, S., Porter, A.J.R., Harris, W.J. // J. Immunol. 2000 V. 164. P. 6221–6229. https :// doi.org/10.4049/jimmunol.164.12.6221
- Wei Q., Zhao Y., Du B., Wu D., Li H., Yang M. // Food Chem. 2012. V. 134. № 3. P. 1601– 1606. https :// https :// doi.org/10.1016/j.foodchem.2012. 02.126
- Aripov V.S., Volkova N.V., Ilyichev A.A., Shcherba-| kov D.N. // Vavilov Journal of Genetics and Breeding. 2024. V. 28. № 2 . P. 249–257. https :// https :// doi.org/10.18699/vjgb-24-29
- Smith G.P., Scott J.K. // Methods Enzymol. 1993. V. 217. P. 228–257. https :// doi.org/10.1016/0076-6879(93)17065-D
- Shah K., Maghsoudlou P. // Br. J. Hosp. Med. 2016. V. 77. P. 98 – 101. https :// doi.org/10.12968/hmed.2016.77.7.C98
- Frens G. // Nat. Phys. Sci. 1973. V. 241. P. 20–22. https :// doi.org/10.1038/physci241020a0
- Guliy O.I., Zaitsev B.D., Burygin G.L., Karavaeva O.A., Fomin A.S., Staroverov S.A. // Ultrasound Med. Biol. 2020. V. 46. P. 1727–1737. https :// doi.org/10.1016/j.ultrasmedbio.2020.03.014
- Khlebtsov N.G ., Dykman L.A., Khlebtsov B.N. // Russ. Chem. Rev. 2022. V. 91. P. 1–29. https :// doi.org/10.57634/RCR5058
- Chang Y.-M., Chen Cammy K.-M. , Hou M.-H. // Int. J. Mol. Sci. 2012. V. 13. P. 3394–3413. https :// doi.org/10.3390/ijms13033394
- Bruque M.G., Rodger A., Hoffmann S.V., Jones N.C., Aucamp J., Dafforn T.R. et al. // Anal. Chem. 2024. V. 96. P. 15151−15159. https :// doi.org/10.1021/acs.analchem.4c01882
Дополнительные файлы


